Advertisement

Termites and Indian Agriculture

  • Bishwajeet PaulEmail author
  • Md. Aslam Khan
  • Sangeeta Paul
  • K. Shankarganesh
  • Sarbasis Chakravorty
Chapter
Part of the Sustainability in Plant and Crop Protection book series (SUPP)

Abstract

Termites are the most dominant arthropod decomposers in the tropical forests and show high diversity and abundance. Within tropical ecosystems, they play a key role in modifying the biotic and abiotic environment. The areas of higher altitudes and extreme temperatures have restricted the distribution of termite fauna in India. The species richness is more in the north-eastern regions, compared to rest of India. Out of 337 species of termites known so far from India, about 35 have been reported damaging agricultural crops and buildings. Odontotermes is the major mound-builder, whereas Coptotermes, Heterotermes, Microtermes, Microcerotermes and Trinervitermes are the major subterranean genera occurring in India.

The losses caused amount to several hundred million of rupees per year. Termites damage crops from sowing till harvest, and it is difficult to detect damage in the field. Usually it is too late when the symptoms are noticed. In general, termite damage is seen more (20–25%) in rain-fed crops than irrigated ones (10%). Perennial crops are usually attacked during dry seasons and annual crops towards harvest time. Termite infestations have been reported in fruit crops, sugarcane, cotton, paddy, maize, pearl millet, pulses, citrus, vegetables, spices, groundnut and potato in arid zones of India.

Indian agriculture depends on unpredictable rains and is dominated by small and marginal farmers, with meagre resource amounts for insect pest management. The majority of farmers follow the age old practices for management of insect pests. The crop and species diversity often makes the issue more complicated. India is divided into 15 agroclimatic zones. Technologies need to be developed for each zone separately, as no single technology would be effective for all of them. Termite control is a herculean task and is not an advisable option, and management in cropped areas should be our goal. Complete elimination or prevention of termites is neither feasible nor advisable, as their complex biology in many regards poses complications in devising management strategies. Optimistically, prospects for the development of new or improved technologies as well as public acceptance of alternative management appear good. Least toxic and nonchemical methods have been and will continue to be developed. In this chapter we discuss issues related to Indian agriculture and the contemporary practices, being followed by the majority of Indian farmers.

Keywords

Termite management India Biodiversity Damage Agroecosystems 

References

  1. Agarwala, S. B. D. (1955). Control of sugarcane termites (1946–1953). Journal of Economic Entomology, 48, 533–537.CrossRefGoogle Scholar
  2. Altson, R. A. (1947). A fungus parasitic on Coptotermes curvignathus, Holmgr. Nature, 160, 120.CrossRefGoogle Scholar
  3. Beeson, C. F. C. (1941). A guide to the control of termites for forest officers. Indian Forest Records (New Series) Entomology, 4, 44–90.Google Scholar
  4. Bignell, D. E., & Eggleton, P. (2000). Termites in ecosystems. In T. Abe, M. Higashi, & D. E. Bignell (Eds.), Termites: Evolution, sociality, symbioses, ecology (p. 466). Dordrecht: Springer.Google Scholar
  5. Bose, G. (1984). Termite fauna of southern India. Rec. Zoological Survey of India, Occasional paper, 49, 1–270Google Scholar
  6. Boue, S. M., & Raina, A. K. (2003). Effects of plant flavonoids on fecundity, survival, and feeding of the Formosan subterranean termite. Journal of Chemical Ecology, 29, 2575–2584.PubMedCrossRefGoogle Scholar
  7. Brown, K. W. (1962). Termite control research in Uganda with particular reference to control of attacks in eucalyptus plantations (p. 9). Eighth British commonwealth forestry conference, Entebbe, Government Publication, Uganda Protectorate.Google Scholar
  8. Carta, L. K., & Osbrink, W. (2005). Rhabditis rainai n. sp. (Nematoda: Rhabditida) associated with the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Nematology, 7, 863–879.CrossRefGoogle Scholar
  9. Carta, L. K., Handoo, Z. A., Lebedeva, N. I., Raina, A., Zhuginisov, T. I., & Khamraev, A. S. (2010). Pelodera termitis sp. n. and two other rhabditid nematode species associated with the Turkestan termite Anacanthotermes turkestanicus from Uzbekistan. International Journal of Nematology, 20, 125–134.Google Scholar
  10. Chai, Y. Q. (1995). Preliminary studies on the pathogenicity of some entomopathogenous fungi to Coptotermes formosanus. Chinese Journal of Biological Control, 11, 68–69.Google Scholar
  11. Cheng, S. S., Wu, C. L., Chang, H. T., Kao, Y. T., & Chang, S. T. (2004). Antitermitic and antifungal activities of essential oil of Calocedrus formosana leaf and its composition. Journal of Chemical Ecology, 30, 1957–1967.PubMedCrossRefGoogle Scholar
  12. Cheng, S. S., Chang, H. T., Wu, C. L., & Chang, S. T. (2007). Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresource Technology, 98, 456–459.PubMedCrossRefGoogle Scholar
  13. Chhotani, O. B. (1977). A review of taxonomy of Indian termites. Records of the Zoological Survey of India, 9, 1–36.Google Scholar
  14. Chhotani, O. B. (1980). Termite pests of agriculture in Indian region and their control. Technical Monograph, 4, 1–84.Google Scholar
  15. Chhotani, O. B. (1997). The fauna of India and the adjacent countries. Isoptera (Termites): (family Termitidae). Zoological Survey of India, 2, 750–800.Google Scholar
  16. Chouvenc, T., & Su, N. Y. (2010). Apparent synergy among defense mechanisms in subterranean termites (Rhinotermitidae) against epizootic events – The limits and potential for biological control. Journal of Economic Entomology, 103, 1327–1337.PubMedCrossRefGoogle Scholar
  17. Chouvenc, T., Su, N. Y., & Robert, A. (2009a). Inhibition of Metarhizium anisopliae in the alimentary tract of the eastern subterranean termite Reticulitermes flavipes. Journal of Invertebrate Pathology, 101, 130–136.PubMedCrossRefGoogle Scholar
  18. Chouvenc, T., Su, N. Y., & Robert, A. (2009b). Cellular encapsulation in the eastern subterranean termite, Reticulitermes flavipes (Isoptera), against infection by the entomopathogenic fungus, Metarhizium anisopliae. Journal of Invertebrate Pathology, 101, 234–241.PubMedCrossRefGoogle Scholar
  19. Christie, J. R. (1941). Life history. General discussion. In An introduction to nematology (pp. 243–372). Section II. Chapters IV–XI.Google Scholar
  20. Coghlan, A. (2004). Green pesticide is irresistible to ants. New Scientist, 184, 26.Google Scholar
  21. Collins, N. M. (1983). Termite populations and their role in litter removal in Malaysian rain forests. In S. L. Sutton, T. C. Whitmore, & A. C. Chadwick (Eds.), Tropical rain forest: Ecology and management (pp. 311–325). Oxford: Blackwell Scientific Publications.Google Scholar
  22. Cornelius, M. L., Grace, J. K., & Yates, J. R. (1997). Toxicity of monoterpenoids and other natural products to the formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 87, 705–708.CrossRefGoogle Scholar
  23. Cunha, H. F., & Orlando, T. Y. S. (2011). Functional composition of termite species in areas of abandoned pasture and in secondary succession of the parque estadual altamiro de moura pacheco, goiás, Brazil. Bioscience Journal Uberlândia, 27, 986–992.Google Scholar
  24. Danthanarayana, W., & Vitarana, S. L. (1987). Control of the live wood tea termite. Glyptotermes dilatatus using Heterorhabditis sp. (Nemat.) Agriculture Ecosystems and Environment, 19, 333–342.CrossRefGoogle Scholar
  25. Das, G. M. (1965). Pests of tea in North East India and their control (p. 115). Memorandum No 27, Tocklai Experimental Station, Jorhat.Google Scholar
  26. Davies, R. G., Hernandez, L. M., Didham, R. K., Fagan, L. L., & Winchester, N. N. (2003). Environmental and spacial influences upon species composition of a termite assemblage across neotropical forest islands. Journal of Tropical Ecology, 19, 509–524.CrossRefGoogle Scholar
  27. DeBach, P. H., & McOmie, W. A. (1939). New diseases of termites caused by bacteria. Annals of the Entomological Society of America, 32, 37–146.Google Scholar
  28. DeBlauwe, I., Dibog, L., Missoup, A. D., Dupain, J., Van Elsacker, L., Dekoninck, W., Bonte, D., & Hendrickx, F. (2008). Spatial scales affecting termite diversity in tropical low land rainforest: A case study in southeast Cameroon. African Journal of Ecology, 46, 5–18.CrossRefGoogle Scholar
  29. Devi, K. K. (2013). Investigations on cyanide producing Pseudomonas bacterial species and their potential for application against termite Odontotermes obesus. University of Delhi.Google Scholar
  30. Devi, K. K., & Kothamasi, D. (2009). Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiology Letters, 300, 195–200.PubMedCrossRefGoogle Scholar
  31. Devi, K. K., Seth, N., Kothamasi, S., & Kothamasi, D. (2007). Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in Vitro Conditions. Current Microbiology, 54, 74–78.PubMedCrossRefGoogle Scholar
  32. Divya, K., & Sankar, M. (2009). Entomopathogenic nematodes in pest management. Indian Journal of Science and Technology, 2, 53–60.Google Scholar
  33. Dong, C., Zhang, J., Huang, H., Chen, W., & Hu, Y. (2009). Pathogenicity of a new China variety of Metarhizium anisopliae (M. anisopliae var.dcjhyium) to subterranean termite Odontotermes formosanus. Microbiological Research, 164, 27–35.PubMedCrossRefGoogle Scholar
  34. Doolittle, M., Raina, A., Lax, A., & Boopathy, R. (2007). Effect of natural products on gut microbes in Formosan subterranean termite, Coptotermes formosanus. International Biodeterioration and Biodegradation, 59, 69–71.CrossRefGoogle Scholar
  35. Edwards, W., & Mill, A. E. (1986). Termites in buildings. Their biology and control. East Grinstead: Rentokil Limited.Google Scholar
  36. EL-Bassiouny, A. R., & El-Rahman, R. M. A. (2011). Susceptibility of egyptian subterranean termite to some entomopathogenic nematodes. Egyptian Journal of Agricultural Research, 89, 121–135.Google Scholar
  37. Feakin, S. D. (1973). Pest control in groundnuts. PANS Manual No. 2 COPR, Foreign & Common. London: Office, Overseas Development Administration.Google Scholar
  38. Fokialakis, N., Osbrink, W. L., Mamonov, L. K., Gemejieva, N. G., Mims, A. B., Skaltsounis, A. L., Lax, A. R., & Cantrell, C. L. (2006). Antifeedant and toxicity effects of thiophenes from four Echinops species against the Formosan subterranean termite, Coptotermes formosanus. Pest Management Science, 62, 832–838.PubMedCrossRefGoogle Scholar
  39. Freise, F. (1949). A significação de formigas e cupins nas matas tropicais e capoeiras. Observa- ções feitas nas florestas litorâneas do Brasil. Annl Brasil Econ Forestal, 2, 145–154.Google Scholar
  40. Gadhiya, V. C., & Borad, P. K. (2013). Effect of insecticidal seed treatment on reduction of termite damage and increase in wheat yield. Pesticide Research Journal, 25, 87–89.Google Scholar
  41. Ganapaty, S., Thomas, P. S., Fotso, S., & Laatsch, H. (2004). Antitermitic quinones from Diospyros sylvatica. Phytochemistry, 65, 1265–1271.PubMedCrossRefGoogle Scholar
  42. Gangwar, S. K., Tewari, R. K., & Lakshman, L. (2003, August 22–24). Monitoring of insect pest incidence, yield losses and their management in late planted sugarcane. In Proceedings of the 65th Annual Convention of the Sugar Technologists’ Association of India (pp. A186–A195). Bhubaneshwar.Google Scholar
  43. GEI. (2005). Demonstration project of alternatives to chlordane and mirex for termite control in China. Bejing: Guangdong Entomological Institute. From The World Bank. http://web.worldbank.org/external/projects
  44. Georgis, R., Poinar, G. O., Jr., & Wilson, A. P. (1982). Susceptibility of dampwood termites and soil and wood-dwelling termites to the entomogenous nematode Neoplectana carpocapsae. International Research Communications Systems Medical Science: Microbiology Parasitology Infectious Diseases, 10, 563.Google Scholar
  45. Giridhar, G., Vesudevan, S., & Vesudevan, P. (1988). Antitermites properties of Calotropis latex. Pesticides, 22, 31–33.CrossRefGoogle Scholar
  46. Glare, T. R., & Milner, R. J. (1991). Ecology of entomopathogenic fungi. In D. K. Arora, K. G. Mukerji, & P. JGE (Eds.), Handbook of applied mycology, Humans, animals, and insects (Vol. 2, pp. 547–612). New York: Dekker.Google Scholar
  47. Grace, J. K. (1994). Protocol for testing effects of microbial pest control agents on nontarget subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 87, 269–274.CrossRefGoogle Scholar
  48. Grace, J. K. (1997). Biological control strategies for suppression of termites. Journal of Agricultural Entomology, 14, 281–289.Google Scholar
  49. Grace, J. K., & Yates, J. R. (1992). Behavioural effects of a neem insecticide on Coptotermes formosanus (Isoptera: Rhinotermitidae). Tropical Pest Management, 38, 176–180.CrossRefGoogle Scholar
  50. Grace, J. K., Goodell, B. S., Jones, W. E., Chandhoke, V., & Jellison, J. (1992). Inhibition of termite feeding by fungal siderophores (pp. 1–4). The International Research Group on Wood Preservation. Document No: IRGAVP/1558-92. Biological Problems (Fauna).Google Scholar
  51. Grewal, P. S., Nardo, E. D., & Aguillera, M. M. (2001). Entomopathogenic nematodes: Potential for exploration and use in South America. Neotropical Entomology, 30, 191–205.CrossRefGoogle Scholar
  52. Gurusubramanian, G., Sarmah, M., Rahman, A., Roy, S., & Bora, S. (2008). Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures: A review. Journal of Environmental Biology, 29, 813–826.PubMedGoogle Scholar
  53. Handoo, Z. A., Lebedeva, N. A., Carta, L. K., Khamraev, A. S., Zhuginisov, T. I., & Raina, A. K. (2005, October 16–22). A new species of Caenorhabditis (Nematoda: Rhabditida) found associated with termites (Anacanthotermes turkestanicus) in Uzbekistan. In Proceedings of International workshop on termites of central Asia: Biology, Ecology and Control (p. 38). Tashkent.Google Scholar
  54. Harazono, K., Yamashita, N., Shinzato, N., Watanabe, Y., Fukatsu, T., & Kurane, R. (2003). Isolation and characterization of aromatics-degrading microorganisms from the gut of the lower termite Coptotermes formosanus. Bioscience, Biotechnology, and Biochemistry, 67, 889–892.PubMedCrossRefGoogle Scholar
  55. Harris, W. V. (1969). Termites as pests of crops and trees. Commonwealth Institute of Entomology HDRA – the organic organisation: Termite control without chemicals. www.gardenorganic.org.uk/pdfs/international_programme/Termite.pdf
  56. Harris, W. V. (1971). Termites, their recognition and control (2nd ed.pp. 15–32). London: Longman Publishers.Google Scholar
  57. Henderson, G. (2007). Effect of Aspergillus flavus and Trichoderma harzianum on survival of Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology, 49, 135–141.Google Scholar
  58. Hiranwrongwera, C., Adisettakul, P., Tansirichaiya, S., Piyabun, O., & Somsuk, V. (2007, November 1–3). Efficiency of a nematode (Steinernema carpocapsae) and its symbiotic bacterium (Xenorhabdus nematophila) at eliminating the termite Coptotermes curvignathus that infests para rubber (Hevea brasiliensis). The 5th international symposium on biocontrol and biotechnology (p. 90). Nong Khai Campus, Nong Khai: Khon Kaen University.Google Scholar
  59. Howse, P. E. (1970). Termite: A study in social behaviour (pp. 25–29). West Sussex: Rentokil Ltd. 163–176.Google Scholar
  60. Hussain, M. A. (1935). Pests of wheat crop in India. In Proceedings of the worlds grain exhibition and conference (Vol. 2, pp. 562–564).Google Scholar
  61. Husseneder, C., & Grace, J. K. (2005). Genetically engineered termite gut bacteria (Enterobacter cloacae) deliver and spread foreign genes in termite colonies. Applied Microbiology and Biotechnology, 68, 360–367.PubMedCrossRefGoogle Scholar
  62. Isman, M. B. (2000). Plant essential oils for pest and disease management. Crop Protection, 19, 10603–10608.CrossRefGoogle Scholar
  63. Jaipal, S., & Chaudhary, O. P. (2010). Imidacloprid as an effective insecticide against termites infesting sugarcane crop. Indian Journal of Sugarcane Technology, 25, 54–57.Google Scholar
  64. Jaipal, S., & Singh, D. (2003). Bioefficacy of imidachlopirid and amrutgard against termites and shoot borer in sugarcane crop. Indian Sugar, 59, 709–716.Google Scholar
  65. James, R. R. (2009). Microbial control for invasive arthropod pests of honey bees. In A. E. Hajek, T. R. Glare, & M. O’Callaghan (Eds.), Use of microbes for control and eradication of invasive arthropods (pp. 271–288). Dordrecht: Springer.CrossRefGoogle Scholar
  66. Jarrold, S. L., Moore, D., Potter, U., & Charnley, A. K. (2007). The contribution of surface waxes to pre-penetration growth of an entomopathogenic fungus on host cuticle. Mycological Research, 111, 240–249.PubMedCrossRefGoogle Scholar
  67. Jayanthi, M., Singh, K. M., & Singh, R. N. (1993). Succession of insect pest on high yielding groundnut variety under Delhi conditions. Indian Journal of Entomology, 55, 24–29.Google Scholar
  68. Johnson, R. A., Lamb, R. W., & Wood, T. G. (1981). Termite damage and crop loss studies in Nigeria a survey to groundnuts. Tropical Pest Management, 27, 325–342.CrossRefGoogle Scholar
  69. Joshi, P. K., Singh, N. P., Singh, N. N., Gerpacio, R. V., & Pingali, P. L. (2005). Maize in India: Production systems, constraints, and research priorities (p. 42). Mexico: CIMMYT.Google Scholar
  70. Kanzaki, N., Giblin-Davis, R. M., Scheffrahn, R. H., & Center, B. J. (2009a). Poikilolaimus floridensis n. sp. (Rhabditida: Rhabditidae) associated with termites (Kalotermitidae). Nematology, 11, 203–216.CrossRefGoogle Scholar
  71. Kanzaki, N., Giblin-Davis, R. M., Scheffrahn, R. H., Center, B. J., & Davies, K. A. (2009b). Pseudaphelenchus yukiae n. gen., n. sp. (Tylenchina: Aphelenchoididae) associated with Cylindrotermes macrognathus (Termitidae: Termitinae) in La Selva, Costa Rica. Nematology, 11, 869–881.CrossRefGoogle Scholar
  72. Kanzaki, N., Giblin-Davis, R. M., Herre, E. A., Scheffrahn, R. H., & Center, B. J. (2010). Pseudaphelenchus vindai n. sp. (Tylenchomorpha: Aphelenchoididae) associated with termites (Termitidae) in Barro Colorado Island, Panama. Nematology, 12, 905–914.CrossRefGoogle Scholar
  73. Kanzaki, N., Li, H. F., Lan, Y. C., Kosaka, G.-D. R. M., & Center, B. J. (2011). Poikilolaimus carsiops n. sp. (Rhabditida: Rhabditidae) associated with Neotermes koshunensis (Kalotermitidae) in Kenting National Park, Taiwan. Nematology, 13, 155–164.CrossRefGoogle Scholar
  74. Kanzaki, N., Li, H. F., Lan, Y. C., & Giblin-Davis, R. M. (2014). Description of two Pseudaphelenchus species (Tylenchomorpha: Aphelenchoididae) associated with Asian termites and proposal of Tylaphelenchinae n. subfam. Nematology, 16, 963–978.CrossRefGoogle Scholar
  75. Kashyap, R. K., Verma, A. N., & Bhanot, J. P. (1984). Termites of plantation crops, their damage and contol. Journal of Plantation Crops, 12, 1–10.Google Scholar
  76. Kaushal, P. K., & Deshpande, R. R. (1967). Losses to groundnut by termites. JNKVV Research Journal, 92–93.Google Scholar
  77. Khan, K. I., Fazal, Q., & Jafari, R. H. (1977). Pathogenicity of locally discovered Bacillus thuringiensis strain to the termites Heterorhabditis indica (Wassman) and Microtermes championi (Snyder). Pakistan Journal of Scientific Research, 29, 12–13.Google Scholar
  78. Khan, H. K., Jayaraj, S., & Gopalan, M. (1993). Muscardine fungi for the biological control of agroforestry termite Odontotermes obesus (Rambur). Insect Science and Its Application, 14, 529–535.Google Scholar
  79. Khucharoenphaisan, K., Sripairoj, N., & Sinma, K. (2012). Isolation and identification of actinomycetes from termite's gut against human pathogen. Asian Journal of Animal and Veterinary, 7, 68–73.CrossRefGoogle Scholar
  80. Kramm, K. R., & West, D. F. (1982). Termite pathogens: Effects of ingested Metarhizium, Beauveria, and Gliocladium conidia on worker termites (Reticulitermes sp.) Journal of Invertebrate Pathology, 40, 7–11.CrossRefGoogle Scholar
  81. Krishna, K., & Weesner, F. M. (1970). Taxonomy, phylogeny and distribution. In K. Krishna & F. M. Weesner (Eds.), Biology of termites (p. 643). New York: Academic.Google Scholar
  82. Kumar, N. G. (1991). Studies on the ecology of subterranean termite, Odontotermes hornii (Wasmann) (Isoptera: Termitidae) and its foraging effect on nutrient status. Ph.D. thesis, University of Agricultural Sciences, Bangalore. (p. 254).Google Scholar
  83. Kumar, C. T. A., & Veeresh, G. K. (1990). Foraging activity of the subterranean termite Microtermes obesi Holmgren (Termitidae: Isoptera). In G. K. Veeresh, B. Mallik, & C. A. Viraktamath (Eds.), Social insects and the environment: Proceedings of the 11th international congress of IUSSI, 1990 (International Union for the Study of Social Insects): 575. Leiden: E.J. Brill, xxxi + 765 pp.Google Scholar
  84. Kumawat, K. C. (2001). Evaluation of some insecticides against field termites, Odontotermes obesus and Microtermes obesi in wheat, Triticum aestivum. Annals of Plant Protection Sciences, 9, 51–53.Google Scholar
  85. Lenz, M., & Runko, S. (1992). Use of microorganisms to control colonies of the coconut termite Neotermes rainbowi (Hill) on Vaitupu, Tuvalu (p. 47). Commonwealth Scientific and Industrial research Organisation, Division of Entomology, Termite Group Report No. 92/16.Google Scholar
  86. Lenz, M., Kamath, M. K., Lal, S., & Senivasa, E. (2000). Status of the tree-damaging Neotermes sp. in Fiji’s American mahogany plantation and preliminary evaluation of the use of entomopathogens for their control. ACIAR Small Project No. FST/96/205, Project Report (in part).Google Scholar
  87. Lobry de Bruyns, L. A., & Conacher, A. J. (1990). The role of termites and ants in soil modification: A review. Australian Journal of Soil Research, 28, 55–93.Google Scholar
  88. Logan, J. W. M., Cowie, R. H., & Wood, T. G. (1990). Termite (Isoptera) control in agriculture and forestry by non-chemical methods: A review. Bulletin of Entomological Research, 80, 309–330.CrossRefGoogle Scholar
  89. Madan, Y. P., Singh, M., & Singh, M. (1998). Evaluation of some soil insecticides for termites and shoot borer control in sugarcane. Indian Sugar, 49, 515–518.Google Scholar
  90. Maistrello, L., Henderson, G., & Laine, R. A. (2001). Effects of nootkatone and a borate compound on formosan subterranean termite (Isoptera: Rhinotermitidae) and its symbiont protozoa. Journal of Entomological Science, 36, 229–236.CrossRefGoogle Scholar
  91. Maistrello, L., Henderson, G., & Laine, R. A. (2003). Comparative effects of vetiver oil, nootkatone and disodium octaborate tetrahydrate on Coptotermes formosanus and its symbiotic fauna. Pest Management Science, 59, 58–68.PubMedCrossRefGoogle Scholar
  92. Maiti, P. K., & Maiti, P. (2011). Biodiversity: Peril and Preservation (p. 537). New Delhi: PHI Learning.Google Scholar
  93. Maniania, N. K., Ekesi, S., & Songa, J. M. (2002). Managing termites in maize with the entomopathogenic fungus Metarhizium anisopliae. Insect Science and Its Application, 22, 41–46.Google Scholar
  94. Mao, L., Henderson, G., Bourgeois, W. J., Vaughn, J. A., & Laine, R. A. (2006). Vetiver oil and nootkatone effects on the growth of pea and citrus. Industrial Crops and Products, 23, 327–332.CrossRefGoogle Scholar
  95. Massey, C. L. (1971). Two new genera of nematodes parasitic in the eastern subterranean termite, Reticulitermes flavipes. Journal of Invertebrate Pathology, 17, 238–242.PubMedCrossRefGoogle Scholar
  96. Mauldin, J. K., & Beal, R. H. (1989). Entomogenous nematodes for control of subterranean termites, Reticulitermes sp. (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 82, 1638–1642.CrossRefGoogle Scholar
  97. McDonald, D. (1970). Fungal infection of groundnut fruit after maturity and during drying. Transactions of the British Mycological Society, 54, 461–472.CrossRefGoogle Scholar
  98. Merrill, J. H., & Ford, A. L. (1916). Life history and habits of two new nematodes parasitic on insects. Journal of Agricultural Research, 6, 115–127.Google Scholar
  99. Milner, R. J. (2000). Current status of Metarhizium as a mycoinsecticide in Australia. Biocontrol News and Information, 21, 47N–50N.Google Scholar
  100. Milner, R. J. (2003). Application of biological control agents in mound building termites (Isoptera: Termitidae) – Experiences with Metarhizium in Australia. Sociobiology, 41, 419–428.Google Scholar
  101. Milner, R. J., Staples, J. A., & Lutton, G. G. (1998). The selection of an isolate of the hyphomycete fungus, Metarhizium anisopliae, for control of termites in Australia. Biological Control, 11, 240–247.CrossRefGoogle Scholar
  102. Mohapatra, H. K., Padhi, J., Samalo, A. P., & Patra, G. J. (1995). Screening promising groundnut varieties against termite damage at Bhubaneshwar, Orissa, India. IAN, 15, 59–60.Google Scholar
  103. MRP (2010) Maxwell Robinson Phelps Termite Report. Maxwell, Robinson and Phelps. http://www.pestcontrol-perth.com/wp-content/uploads/2010/06/Maxwell-Robinson-Phelps-MRP-Termite-Report.pdf
  104. Murugan, K., & Vasugi, C. (2011). Combined effect of Azadirachta indica and the entomopathogenic nematode Steinernema glaseri against subterranean termite, Reticulitermes flavipes. Journal of Entomological and Acarological Research, 43, 253–259.CrossRefGoogle Scholar
  105. Myles, T. G. (2002a). Isolation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) from Reticulitermes flavipes (Isoptera: Rhinotermitidae) with convenient methods for its culture and collection of conidia. Sociobiology, 40, 257–262.Google Scholar
  106. Myles, T. G. (2002b). Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally occurring isolate of Metarhizium anisopliae. Sociobiology, 40, 243–255.Google Scholar
  107. Nair, K. S. S., & Varma, R. V. (1981). Termite control in eucalyptus plantations, KFRI Res Report No 6 (p. 48). Peechi: Kerala Forest Research Institute.Google Scholar
  108. Nakashima, Y., & Shimizu, K. (1972). Antitermitic activity of Thujopsis dolabrata var hondai. III. Components with a termiticidal activity. Miyazaki Daigaku Nogakubu Kenkyu Hokoku, 19, 251–259.Google Scholar
  109. Natsir, H., & Dali, S. (2014). Production and application of chitin deacetylase from Bacillus licheniformis HSA3-1a as Biotermicide. Marina Chimica Acta, 15, 8–12.Google Scholar
  110. Neves, P. J., & Alves, S. B. (1999). Associated control of Cornitermes cumulans (Kollar, 1832) (Isoptera: Termitidae) with Metarhizium anisopliae, Beauveria bassiana and imidacloprid. Scientia Agricola, 56, 305–311.CrossRefGoogle Scholar
  111. Nguyen, K. B., & Smart, G. C. (1994). Neosteinernema longicurvicauda n. gen., n. sp. (Rhabditida: Steinernematidae), a Parasite of the Termite Reticuldermes flavipes (Koller). Journal of Nematology, 26, 162–174.PubMedPubMedCentralGoogle Scholar
  112. Nix, K. E., Henderson, G., Zhu, B. C. R., & Laine, R. A. (2006). Evaluation of vetiver grass root growth, oil distribution, and repellency against formosan subterranean termites. Horticultural Science, 41, 167–171.Google Scholar
  113. Ochiel, G. S., Eilenberg, J., Gitonga, W., Bresciani, J., & Toft, L. (1996). Cordycepioideus bisporus, a naturally occurring fungal pathogen on termite alates in Kenya. IOBC-Wprs Bulletin, 19, 172–178.Google Scholar
  114. Ofori, F., & Stern, W. R. (1987). Cereal-legume intercropping systems. Advances in Agronomy, 41, 41–49.CrossRefGoogle Scholar
  115. Omoya, F. O., & Kelly, B. A. (2014). Variability of the potency of some selected entomopathogenic bacteria (Bacillus sp. and Serratia sp.) on termites, Macrotermes bellicosus (Isoptera: Termitidae) after exposure to magnetic fields. International Journal of Tropical Insect Science, 34, 98–105.CrossRefGoogle Scholar
  116. Osbrink, W. L. A., Williams, K. S., Connick, W. J., Wright, M. S., & Lax, A. R. (2001). Virulence of bacteria associated with the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, LA, USA. Environmental Entomology, 30, 443–448.CrossRefGoogle Scholar
  117. Pandey, P., Singha, L. P., & Singha, B. (2013). Colonization and antagonistic activity of entomopathogenic Aspergillus sp. against tea termite (Microcerotermes beesoni Snyder). Current Science, 105, 1216–1219.Google Scholar
  118. Pardeshi, M. K., Kumar, D., & Bhattacharyya, A. K. (2010). Termite (Insecta: Isoptera) fauna of some agricultural crops of Vadodara, Gujarat (India). Records of the Zoological Survey of India, 110, 47–59.Google Scholar
  119. Parihar, D. R. (1977). Note on some termites of Rajasthan desert. Geobios, 4, 173.Google Scholar
  120. Parihar, D. R. (1978). Field observations on the nature and extent of damage by Indian desert termites and their control. Annals of Arid Zone, 17, 192–199.Google Scholar
  121. Park, I. L. K., & Shin, S. C. (2005). Fumigant activity of plant essential oils and components from garlic (Allium sativum) and clove bud (Eugenia caryophyllata) oils against the Japanese termite (Reticulitermes speratus kolbe). Journal of Agricultural and Food Chemistry, 53, 4388–4392.PubMedCrossRefGoogle Scholar
  122. Pearce, M. J. (1997a). Laboratory culture and experimental techniques using termites (p. 52). Chatham: Natural Resources Institute.Google Scholar
  123. Pearce, M. J. (1997b). Termites: Biology and pest management (1st ed.p. 192). Chatham: CAB International.Google Scholar
  124. Pemberton, C. E. (1928). Nematodes associated with termites in Hawaii, Borneo and Celebes. Proceedings of the Hawaiian Entomological Society, 7, 148–150.Google Scholar
  125. Poinar, G. O., Jr. (1979). Nematodes for Biological Control of Insects. Boca Raton: CRC Press.Google Scholar
  126. Poinar, G. O., Jr. (1990). Redescription of Chroniodiplogaster aerivora (Cobb) gen. n., comb. n. (Rhabditida: Diplogasteridae) from Termites. Journal of the Helminthological Society of Washington, 57, 26–30.Google Scholar
  127. Quarles, W. (1999). Non-toxic control of drywood termites. IPM Practitioner, 21, 1–10.Google Scholar
  128. Rahman, P. M., Varma, R. V., & Sileshi, G. W. (2012). Abundance and diversity of soil invertebrates in annual crops, agroforestry and forest ecosystems in the Nilgiri biosphere reserve of Western Ghats, India. Agroforestry Systems, 85, 165–177.CrossRefGoogle Scholar
  129. Rajagopal, D. (1979). Ecological studies of the mound building termites, Odontotermes wallowensis (Wasmann) (Isoptera: Termitidae) (p. 205). Ph.D. thesis, submitted to the UAS, Bangalore.Google Scholar
  130. Rajagopal, D. (2002). Economically important termite species in India. Sociobiology, 41, 33–46.Google Scholar
  131. Rajagopal, D., & Veeresh, G. K. (1983). Swarming behaviour and colony establishment in Odontotermes walloensis (Wasmann) (Isoptera: Termitidae) in South India. Journal of Soil Biology and Ecology, 3, 29–34.Google Scholar
  132. Rana, J. S., Ombir, & Dahiya, K. K. (2001). Management of termite, Microtermes obesi (Holm.) in wheat, Triticum aestivum through seed treatment. Annales Biologiques, 17, 207–209.Google Scholar
  133. Rashmi, R. S., & Sundararaj, R. (2013). Host range, pest status and distribution of wood destroying termites of india. Journal of Tropical Asian Entomology, 2, 12–27.Google Scholar
  134. Rath, A. C., & Tidbury, C. A. (1996). Susceptibility of Coptotermes acinaciformis (Isoptera: Rhinotermitidae) and Nasutitermes exitiosus (Isoptera: Termitidae) to two commercial isolates of Metarhizium anisopliae. Sociobiology, 28, 67–72.Google Scholar
  135. Rattan, P. S. (1992). Pest and disease control in Africa. In K. C. Wilson & M. N. Clifford (Eds.), Tea: Cultivation to Consumption (pp. 331–352). London: Chapman and Hall.CrossRefGoogle Scholar
  136. Rawat, R. R., Deshpande, R. R., & Kaushal, P. K. (1970). Comparative efficacy of different modern insecticides and their methods of application for the control of termites Odontotennes obesus Rambur in groundnut. The Madras Agricultural Journal, 57, 83–87.Google Scholar
  137. Reese, K. M. (1971). Navy fights Formosan termites in Hawaii. Chemical and Engineering News, 49, 52.CrossRefGoogle Scholar
  138. Rich, W. N., Stuart, J. R., & Rosanna, R. G. (2006). Susceptibility and behavioral responses of the dampwood termite Zootermopsis angusticollis to the entomopathogenic nematodes Steinernema carpocapsae. Journal of Invertebrate Pathology, 95, 17–25.CrossRefGoogle Scholar
  139. Roonwal, M. L. (1955). Termites ruining a township. Zeitschrift für Angewandte Entomologie, 38, 103–104.CrossRefGoogle Scholar
  140. Roonwal, M. L. (1979). Termite life and termite control in tropical South Asia (p. 177). Jodhpur: Scientific Publishers.Google Scholar
  141. Roonwal, M. L. (1981). Termites of agricultural importance in India and their importance. In G. K. Veeresh (Ed.), Progress in soil biology and ecology in India (pp. 253–265). Bangalore: UAS, Tech. Ser. No. 37.Google Scholar
  142. Roonwal, M. L., & Chhotani, O. B. (1967). Indian wood destroying termites. Journal of Bombay Natural History Society, 632, 354–364.Google Scholar
  143. Roonwal, M. L., & Chhotani, O. B. (1989). The fauna of India and the adjacent countries, Isoptera Termites (Vol. 1, p. 671). Calcutta: Zoological Survey of India.Google Scholar
  144. Rosengaus, R. B., & Traniello, J. F. A. (2001). Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behavioral Ecology and Sociobiology, 50, 546–556.CrossRefGoogle Scholar
  145. Rosengaus, R. B., Maxmen, A. B., Coates, L. E., & Traniello, J. F. A. (1998). Disease resistance: A benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behavioral Ecology and Sociobiology, 44, 125–134.CrossRefGoogle Scholar
  146. Rosengaus, R. B., Traniello, J. F. A., Chen, T., & Brown, J. J. (1999). Immunity in a social insect. Naturwissenschaften, 86, 588–591.CrossRefGoogle Scholar
  147. Rudman, P., & Gay, F. J. (1963). Causes of natural durability in timber. X. Deterrent properties of some three-ringed carboxylic and heterocyclic substances to the subterranean termite, Nasutitermes exitiosus. C.S.I.R.O. Div. Forest Prod., Melbourne. Holzforschung, 17, 21–25.CrossRefGoogle Scholar
  148. Rust, M. K., & Su, N. Y. (2012). Managing Social Insects of Urban Importance. Annual Review of Entomology, 57, 355.PubMedCrossRefGoogle Scholar
  149. Sacks, E. (2011). Termites eat through $222,000 worth of rupee notes in Indian bank. Daily News. Available from: http://www.mydailynews.com/news/world/termites-eat-222-000-worth-rupee-notes-indian-bank-article-1.111054
  150. Sajap, A. S., Atim, A. B., Husim, H., & Wahab, Y. A. (1997). Isolation of Conidiobolus coronatus (Zygomycetes: Entomophthorales) from soil and its effect on Coptotermes curvignathus (Isoptera: Rhinotermitidae). Sociobiology, 30, 257–262.Google Scholar
  151. Sakasegawa, M., Hori, K., & Yatagai, M. (2003). Composition and antitermite activities of essential oils from Melaleuca species. Journal of Wood Science, 49, 81–187.CrossRefGoogle Scholar
  152. Sands, W. A. (1960). Observations on termites destructive to trees and crops in W. Africa ( pp. 14–66). Commonwealth Institute of Entomology, Colonial Termite Research Report, London.Google Scholar
  153. Santharam, G., Kumar, K., Kuttalam, S., & Chandrasekaran, S. (2002). Bioefficacy of imidacloprid against termites in sugarcane. Sugar Tech, 4, 161–163.CrossRefGoogle Scholar
  154. Sekamatte, M. B., Ogenga, L. M., & Russell, S. A. (2003). Effects of maize–legume intercrops on termite damage to maize, activity of predatory ants and maize yields in Uganda. Insect Science and Its Application, 22, 87–93.Google Scholar
  155. Sen-Sarma, P. K. (1986). Economically important termites and their management in the oriental region. In S. B. Vinson (Ed.), Economic impact and control of social insects (pp. 69–102). New York: Prager.Google Scholar
  156. Sen-Sarma, P. K., Thakur, M. L., Misra, S.C., & Gupta, B. K. (1975). Wood destroying termites of india (p. 190). FRI Publication.Google Scholar
  157. Shahina, F., Tabassum, K. A., Salma, J., & Mahreen, G. (2011). Biopesticidal affect of Photorhabdus luminescens against Galleria mellonella larvae and subterranean termite (Termitidae: Macrotermis). Pakistan Journal of Nematology, 29, 35–43.Google Scholar
  158. Sharma, R. N., Tare, V., & Pawan, P. (1999). Toxic action of some plant extracts against selected insect pest and vectors. Pestology, 23, 30–37.Google Scholar
  159. Sharma, D. C., Katoch, K. K., & Kashyap, N. P. (2002). Relative efficacy of different insecticides to Odontotermes sp. and Agrotis sp. in wheat. Insect Environment, 8, 10–11.Google Scholar
  160. Sharma, R. K., Sharma, K., & Sekhar, J. C. (2003). Evaluation of plant protectants on damage and yield of rainfed maize by termites. Pesticide Research Journal, 15, 36–39.Google Scholar
  161. Sheppe, W. (1970). Invertebrate predation on termites of the African savanna. Insectes Sociaux, 17, 205–218.CrossRefGoogle Scholar
  162. Singh, D., & Brar, D. S. (1988). Growth and yield of rainfed wheat as affected by seed treatment with aldrin and fertilizer use. Journal of Research Punjab Agricultural University, 25, 188–192.Google Scholar
  163. Singh, S. K., & Singh, G. (2002). Comparative evaluation of chemical and botanical insecticides against termites. Entomon, 27, 153–160.Google Scholar
  164. Singh, M., Singh, D., & Madan, Y. P. (2001). Evaluation of different soil insecticides for the control of termites in sugarcane. Indian Sugar, 51, 365–368.Google Scholar
  165. Singh, G., Singh, O. P., Lampasona, M. P., & Cesar, A. N. (2002a). Studies on essential oils. Part 35: Chemical and biocidal investigations on Tagetes erecta leaf volatile oil. Flavour and Fragrance, 18, 62–65.CrossRefGoogle Scholar
  166. Singh, M., Singh, N. B., & Singh, M. (2002b). Effect of certain insecticides on termite infestations in planted setts of sugar cane. Cooperative Sugar, 34, 311–315.Google Scholar
  167. Singh, M., Singh, N. B., & Singh, M. (2003). Bud damage due to termites in sugarcane. Cooperative Sugar, 33, 655–658.Google Scholar
  168. Singha, D., Singha, B., & Dutta, B. K. (2010). Ultrastructural details of the morphological changes in termite (Microtermes obesi Holmgren) pest of tea exposed to entomopathogenic fungi in vitro. Assam University Journal of Science and Technology, 5, 100–104.Google Scholar
  169. Sivapalan, P. (1999). Pest management in tea. In N. K. Jain (Ed.), Global advances in tea science (pp. 625–646). New Delhi: Aravali Books.Google Scholar
  170. Sivapalan, P., Senaratne, K. A. D. W., & Karunaratne, A. A. C. (1977). Observations on the occurrence and behaviour of live wood termites (Glyptotermes dilatatus) in low country tea fields. Pest Articles News Summaries, 23, 5–8.Google Scholar
  171. Smythe, R. V., & Coppel, H. C. (1965). The susceptibility of Reticulitermes flavipes (Kollar) and other termite species to an experimental preparation of Bacillus thuringiensis Berliner. Journal of Invertebrate Pathology, 7, 423–426.CrossRefGoogle Scholar
  172. Srivastava, K. P. (1996). A text book of applied entomology (Vol. I & II). Ludhiana: Kalyani Publishers.Google Scholar
  173. Srivastava, K. P., & Butani, D. K. (1987). Insect pests of tea in India and their contol. Pesticides, 21, 16–21.Google Scholar
  174. Staples, J. A., & Milner, R. J. (2000). A laboratory evaluation of the repellency of Metarhizium anisopliae conidia to Coptotermes lacteus (Isoptera: Rhinotermitidae). Sociobiology, 36, 133–146.Google Scholar
  175. Subektia, N., Yoshimurab, T., Rokhmanc, F., & Masturd, Z. (2015). Potential for subterranean termite attack against five bamboo species in correlation with chemical components. Procedia Environmental Sciences, 28, 783–788.CrossRefGoogle Scholar
  176. Sudhaus, W., & Koch, C. (2004). The new nematode species Poikilolaimus ernstmayri sp n associated with termites, with a discussion on the phylogeny of Poikilolaimus (Rhabditida). Russian Journal of Nematology, 12, 143–156.Google Scholar
  177. Sun, J., Fuxa, J. R., & Henderson, G. (2003). Virulence and in vitro characteristics of pathogenic fungi isolated from soil by baiting with Coptotermes formosanus (Isoptera: Rhinotermitidae). Journal of Entomological Science, 38, 342–358.CrossRefGoogle Scholar
  178. Tahseen, Q., Akram, M., Mustaqim, M., & Ahlawat, S. (2014). Descriptions of Pelodera scrofulata sp. nov. and Pelodera aligarhensis sp. nov.(Nematoda: Rhabditidae) with supplementary information on Pelodera teres (Schneider, 1866). Journal of Natural History, 48, 1027–1053.CrossRefGoogle Scholar
  179. Tanada, Y., & Kaya, H. K. (1993). Insect pathology. San Diego: Academic Press.Google Scholar
  180. Tewary, A. (2008). Termites feast on trader’s money, life savings. Daily news. Available from: http://news.bbc.co.uk/2/hi/south_asia/7334033.stm
  181. Thakur, R. K. (1996). Termite problems in arid zones and their management. Indian Forester, 122, 161–169.Google Scholar
  182. Thambidurai, S. (2002). Termite control using natural plant products. Indigenous Agriculture News, 1, 9.Google Scholar
  183. Thorne, B. L. (1997). Evolution of eusociality in termites. Annual Review of Ecology and Systematics, 28, 27–54.CrossRefGoogle Scholar
  184. Toumanoff, C. (1966). Observations sur les affections bactériennes des termites en Saintonge (Reticulitermes santonensis de Feytaud). Insectes Sociaux, 13, 155–163.CrossRefGoogle Scholar
  185. Toumanoff, C., & Toumanoff, C. H. (1959). Les épizooties dues à Serratia marcescens Bizio chez un termite (Reticulitermes santonensis de Feytaud). Comptes Rendus Hébdomadaires de l’Academie Agricole Française, 45, 216–218.Google Scholar
  186. Trenbath, B. R. (1993). Intercropping for the management of pests and diseases. Field Crops Research, 34, 381–405.CrossRefGoogle Scholar
  187. Tsunoda, K., Ohmura, W., & Yoshimura, T. (1993). Methane emissions by the termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). (II) Presence of methanogenic bacteria and effect of food on methane emission rates. Japanese Journal of Environmental Entomology and Zoology, 27, 45–49.Google Scholar
  188. UNEP/FAO/Global IPM Facility Expert Group on Termite Biology and Management. (2000). Finding alternatives to persistent organic pollutants (POPs) for termite management. Online at: www.chem.unep.ch/pops/termites/termite_ch4.htm
  189. Verma, R. K., & Verma, S. K. (2006). Phytochemical and termiticidal study of Lantana camara var. aculeata leaves. Fitoterapia, 77, 466–468.PubMedCrossRefGoogle Scholar
  190. Verma, A. N., Bhanot, J. P., & Khurana, A. D. (1980). Effect of different dates of sowing of aldrin treated and untreated wheat seed on germination, termite damage and yield of wheat crop. Haryana Agricultural University Journal of Research, 10, 41–44.Google Scholar
  191. VonLieven, A. F., & Sudhaus, W. (2008). Description of Oigolaimella attenuata n. sp. (Diplogastridae) associated with termites (Reticulitermes) and remarks on life cycle, giant spermatozoa, gut-inhabiting flagellates and other associates. Nematology, 10, 501–523.CrossRefGoogle Scholar
  192. Wang, C., & Henderson, G. (2013). Evidence of Formosan subterranean termite group size and associated bacteria in the suppression of entomopathogenic bacteria, Bacillus thuringiensis subspecies israelensis and thuringiensis. Annals of the Entomological Society of America, 106, 454–462.CrossRefGoogle Scholar
  193. Wardle, D. A. (1987). Control of termites in nurseries and young plantations in Africa: Established practices and alternative courses of action. Commonwealth Forestry Review, 66, 77–89.Google Scholar
  194. Watson, J. M., & Stenlake, J. B. (1965). An introduction to parasitology (p. 22). London: William Heinemann Medical Books Ltd.Google Scholar
  195. Weeks, B., & Baker, P. (2004). Subterranean Termite (Isoptera: Rhinotermitidae) Mortality Due to Entomopathogenic Nematodes (Nematoda: Steinernematidae, Heterorhabditidae). University of Arizona College of Agriculture. 2004 Turfgrass and Ornamental Research Report, Online at: http://cals.arizona.edu/pubs/crops/az1359/
  196. Wells, J. D., Fuxa, J. R., & Henderson, G. (1995). Virulence of four fungal pathogens to Coptotermes formosanus (Isoptera: Rhinotermitidae). Journal of Entomological Science, 30, 208–215.CrossRefGoogle Scholar
  197. Wood, T. G., & Cowie, R. H. (1988). Assessment of on-farm losses in cereals in Africa due to soil insects. Insect Science and Its Application, 9, 709–716.Google Scholar
  198. Wood, T. G., & Sands, W. A. (1978). The role of termites in ecosystems. In M. V. Brian (Ed.), Production ecology of ants and termites (pp. 245–292). Cambridge: Cambridge University Press.Google Scholar
  199. Wright, M. S. (2005). A strain of the fungus Metarhizium anisopliae for controlling subterranean termites. Journal of Economic Entomology, 98, 1451–1458.PubMedCrossRefGoogle Scholar
  200. Wright, M. S., & Lax, A. R. (2013). Combined effect of microbial and chemical control agents on subterranean termites. Journal of Microbiology, 51, 578–583.CrossRefGoogle Scholar
  201. Yendol, W. G., & Paschke, J. D. (1965). Pathology of an Entomophthora infection in the eastern subterranean termite Reticulitermes flavipes (Kollar). Journal of Invertebrate Pathology, 7, 414–422.CrossRefGoogle Scholar
  202. Yu, H., Gouge, D., & Baker, P. (2006). Parasitism of subterranean termites (Isoptera: Rhinotermitidae: Termitidae) by entomopathogenic nematodes (Rhabditida: Steinernematidae; Heterorhabditidae). Journal of Economic Entomology, 99, 1112–1119.PubMedCrossRefGoogle Scholar
  203. Zadji, L., Baimey, H., Afouda, L., Moens, M., & Decraemer, W. (2014a). Characterization of biocontrol traits of heterorhabditid entomopathogenic nematode isolates from South Benin targeting the termite pest Macrotermes bellicosus. BioControl, 59, 333–344.CrossRefGoogle Scholar
  204. Zadji, L., Baimey, H., Afouda, L., Moens, M., & Decraemer, W. (2014b). Comparative susceptibility of Macrotermes bellicosus and Trinervitermes occidentalis (Isoptera: Termitidae) to entomopathogenic nematodes from Benin. Nematology, 16, 719–727.CrossRefGoogle Scholar
  205. Zadji, L., Baimey, H., Afouda, L., Moens, M., & Decraemer, W. (2014c). Effectiveness of different Heterorhabditis isolates from Southern Benin for biocontrol of the subterranean termite, Macrotermes bellicosus (Isoptera: Macrotermitinae), in laboratory trials. Nematology, 16, 109–120.CrossRefGoogle Scholar
  206. Zhu, J. H. (2002). Study on application of entomopathogenic nematodes to control Odontotermes formosanus Shiraki on eucalyptus. Journal of Fujian College of Forestry, 22, 366–370.Google Scholar
  207. Zhu, B. C. R., Henderson, G., Chen, F., Fei, H., & Laine, R. A. (2001a). Evaluation of vetiver oil and seven insect-active essential oils against the formosan subterranean termite. Journal of Chemical Ecology, 27, 1617–1625.PubMedCrossRefGoogle Scholar
  208. Zhu, B. C. R., Henderson, G., Chen, F., Maistrello, L., & Laine, R. A. (2001b). Nootkatone is a repellent for formosan subterranean termite (Coptotermes formosanus). Journal of Chemical Ecology, 27, 523–531.PubMedCrossRefGoogle Scholar
  209. Zimmerman, G. (1993). The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pesticide Science, 37, 375–379.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Bishwajeet Paul
    • 1
    Email author
  • Md. Aslam Khan
    • 2
  • Sangeeta Paul
    • 3
  • K. Shankarganesh
    • 1
  • Sarbasis Chakravorty
    • 4
  1. 1.Division of EntomologyICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.Department of Biology, Faculty of ScienceJazan UniversityJazanSaudi Arabia
  3. 3.Division of MicrobiologyICAR-Indian Agricultural Research InstituteNew DelhiIndia
  4. 4.Centre for Agricultural Technology Assessment & TransferICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations