Biotechnology: A Tool in Termite Management

  • Tariq AhmadEmail author
  • Shabnum Nabi
  • Qazi Humera
Part of the Sustainability in Plant and Crop Protection book series (SUPP)


Termites are the silent invaders, which affect life and property. Being regarded as one of the important agricultural and urban pests, they are of national and international concern to scientists and farmers in particular and to masses in general. It is being estimated that the annual cost of termite damage to the buildings in USA is greater than that of combined cost of fires, storms, and floods, as such hinting an urgent need for termite management. Control strategies have shifted focus on biotechnological approaches for all-inclusive termite management. Biotechnology, globally recognized as a rapidly emerging and far-reaching field, is the “technology of hope” for its promising role in food, health, and environmental sustainability. Latest and enduring advances in life sciences offer a promising scenario, with a large number of agri- and industrial biotech products that have enormously helped mankind. Biotechnology is necessary to sustain an agriculture competitive and remunerative and to achieve nutrition security in the face of major present challenges. Investment in agricultural-related biotechnology has resulted in significantly enhanced research and development capability and institutional building over the years. However, progress has been rather slow in converting the research leads into usable product. In this chapter, therefore, we examine the potential of biotechnology as a tool in termite management.


Termite Biotechnological approaches Sustainable management 


  1. Albuquerque, L. P., Santana, G. M. S., Pontual, E. V., Napoleao, T. H., Coelho, L. C. B. B., & Paiva, P. M. G. (2012). Effect of Microgramma vaccinifolia rhizome lectin on survival and digestive enzymes of Nasutitermes corniger (Isoptera, Termitidae). International Biodeterioration and Biodegradation, 75, 158–166.CrossRefGoogle Scholar
  2. Alonso, D. M., Wettstein, S. G., Bond, J. Q., Root, T. W., & Dumesic, J. A. (2011). Production of biofuels from cellulose and corn stover using alkylphenol solvents. ChemSusChem, 4, 1078–1081.PubMedCrossRefGoogle Scholar
  3. Alves, R. R. N. (2009). Fauna used in popular medicine in Northeast Brazil. Journal of Ethnobiology and Ethnomedicine, 5, 1–30.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alves, R. R. N., & Alves, H. N. (2011). The faunal drugstore: Animal-based remedies used in traditional medicines in Latin America. Journal of Ethnobiology and Ethnomedicine, 7, 1–43.CrossRefGoogle Scholar
  5. Anankware, P. J., Fening, K. O., Osekre, E., & Obeng-Ofori, D. (2015). Insects as food and feed: A review. International Journal of Agricultural Research Review, 3, 143–151.Google Scholar
  6. Banjo, A. D., Lawal, O. A., & Songonuga, E. A. (2006). The nutritional value of fourteen species of edible insects in Southwestern Nigeria. African Journal of Biotechnology, 5, 298–301.Google Scholar
  7. Baulcombe, D. (2004). RNA silencing in plants. Nature, 431, 356–363.PubMedCrossRefGoogle Scholar
  8. Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., & Feldmann, P. (2007). Control of Coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 132–226.CrossRefGoogle Scholar
  9. Belles, X., Martın, D., & Piulachs, M. D. (2005). The mevalonate pathway and the synthesis of juvenile hormone in insects. Annual Review of Entomology, 50, 181–199.PubMedCrossRefGoogle Scholar
  10. Bignell, D. E. (2011). Morphology, physiology, biochemistry and functional design of the termite gut: An evolutionary wonderland. In D. E. Bignell DE, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 375–412). Dordrecht: Springer.CrossRefGoogle Scholar
  11. Bishosha, M. K., & Boloy, N. (1995). Termitary soil and dried peanut straw as market-garden fertilizers in Yangambi (Zaire). Cahiers Agricultures, 4, 125–128.Google Scholar
  12. Black, H. I. J., & Okwakol, M. J. N. (1997). Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of termites. Applied Soil Ecology, 6, 37–53.CrossRefGoogle Scholar
  13. Boucias, D. G., Stokes, C., Storey, G., & Pendland, J. C. (1996). The effects of imidacloprid on the termite Reticulitermes flavipes and its interaction with the mycopathogen Beauveria bassiana. Pflanzenschutz-Nachrichten Bayer, 49, 103–144.Google Scholar
  14. Breznak, J. A. (2000). Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 209–231). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  15. Breznak, J. A., & Brune, A. (1993). Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology, 39, 453–487.CrossRefGoogle Scholar
  16. Brinn, P. J., Black, H. I. J., Spurway, J. K. R., & Mzezewa, J. (1994) Land microvariability in Southwest Zimbabwe; photointerpre- tive identifications of land microvariability. In SADC, proceedings of the 4th annual scientific conference of the SADC-LW and MP research programme, October 1993, Windhoek, Namibia, SADC, Gabarone.Google Scholar
  17. Brugerolle, G., & Radek, R. (2006). Symbiotic protozoa of termites. In H. Konig & A. Varma (Eds.), Intestinal microorganisms of termites and other invertebrates (pp. 243–269). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  18. Brune, A., & Ohkuma, M. (2011). Role of the termite gut microbiota in symbiotic digestion. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 439–475). Dordrecht: Springer.Google Scholar
  19. Bulmer, M. S., & Crozier, R. H. (2004). Duplication and diversifying selection among termite antifungal peptides. Molecular Biology and Evolution, 21, 2256–2264.PubMedCrossRefGoogle Scholar
  20. Bulmer, M. S., & Crozier, R. H. (2006). Variation in positive selection in termite GNBPs and Relish. Molecular Biology and Evolution, 23, 317–326.PubMedCrossRefGoogle Scholar
  21. Bulmer, M. S., Bachelet, I., Raman, R., Rosengaus, R. B., & Sasisekharan, R. (2009). Targeting an antimicrobial effect or function in insect immunity as a pest control strategy. Proceedings of the National Academy of Sciences of the United States of America, 106, 12652–12657.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cao, Y., Sun, J. Z., Rodriguez, J. M., & Lee, K. C. (2010). Hydrogen emission by three wood-feeding subterranean termite species (Isoptera: Rhinotermitidae): Production and characteristics. Insect Science, 17, 237–244.CrossRefGoogle Scholar
  23. Carter, S. E., & Murwira, H. K. (1995). Spatial variability in soil fertility management and communal farming in Mutoko Communal Area, Zimbabwe. Ambio, 24, 77–84.Google Scholar
  24. Chouvenc, T., NY, S., & Grace, J. K. (2011). Fifty years of attempted biological control of termites–analysis of a failure. Biological Control, 59, 69–82.CrossRefGoogle Scholar
  25. Cleveland, L. R. (1928). Further observations and experiments on the symbiosis between termites and their intestinal protozoa. The Biological Bulletin, 54, 231–237.CrossRefGoogle Scholar
  26. Cook, D. M., & Doran-Peterson, J. (2010). Mining diversity of the natural biorefinery housed within Tipula abdominalis larvae for use in an industrial biorefinery for production of lignocellulosic ethanol. Insect Science, 17, 303–312.CrossRefGoogle Scholar
  27. Cornette, R., Koshikawa, S., Hojo, M., Matsumoto, T., & Miura, T. (2006). Caste-specific cytochrome P450 in the damp-wood termite Hodotermopsis sjostedti. Insect Molecular Biology, 15, 235–244.PubMedCrossRefGoogle Scholar
  28. Cornette, R., Gotoh, H., Koshikawa, S., & Miura, T. (2008). Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti. Journal of Insect Physiology, 54, 922–930.PubMedCrossRefGoogle Scholar
  29. Costa-Leonardo, A. M. (2006). Morphology of the sternal gland in workers of Coptotermes gestroi (Isoptera, Rhinotermitidae). Micron, 37, 551–556.PubMedCrossRefGoogle Scholar
  30. Costa-Neto, E. M. (2005). Entomotherapy, or the Medicinal Use of Insects. Journal of Ethnobiology, 25, 93–114.CrossRefGoogle Scholar
  31. Coy, M. R., Salem, T. Z., Denton, J. S., Kovaleva, E. S., & Liu, Z. (2010). Phenol-oxidizing laccases from the termite gut. Insect Biochemistry and Molecular Biology, 40, 723–732.PubMedCrossRefGoogle Scholar
  32. Culliney, T. W., & Grace, J. K. (2000). Prospects for the biological control of subterranean termites (Isoptera: Rhinotermitidae), with special reference to Coptotermes formosanus. Bulletin of Entomological Research, 90, 9–21.PubMedCrossRefGoogle Scholar
  33. De Visse, S. N., Freymann, B. P., & Schnyder, H. (2008). Trophic interactions among invertebrates in termitaria in the African savanna: A stable isotope approach. Ecological Entomology, 33, 758–764.Google Scholar
  34. Dillon, R. J., & Dillon, V. M. (2004). The gut bacteria of insects: Nonpathogenic interactions. Annual Review of Entomology, 49, 71–92.PubMedCrossRefGoogle Scholar
  35. Dossey, A. T. (2010). Insects and their chemical weaponry: New potential for drug discovery. Natural Product Reports, 27, 1737–1757.PubMedCrossRefGoogle Scholar
  36. Douglas, B. J., Michael, J. B., Jay, D. B., Bruce, S., Ronald, E. H., Charles, C. L., & Kurt, W. (2012). Plant cell walls to ethanol. The Biochemical Journal, 442, 241–252.CrossRefGoogle Scholar
  37. Elliott, K. L., Hehman, G. L., & Stay, B. (2009). Isolation of the gene for the precursor of Phe-Gly-Leu-amide allatostatins in the termite Reticulitermes flavipes. Peptides, 30, 85–560.Google Scholar
  38. Eutick, M. L., Veivers, P., O Brien, R. W., & Slaytor, M. (1978). Dependence of the higher termite, Nasutitermes exitiosus and the lower termite, Coptotermes lacteus on their gut flora. Journal of Insect Physiology, 24, 363–368.CrossRefGoogle Scholar
  39. Figueirêdo, R. E. C., Vasconcellos, A., Policarpo, I. S., & Alves, R. R. N. (2015). Edible and medicinal termites: A global overview. Journal of Ethnobiology and Ethnomedicine, 11, 29.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fire, A., Xu, S., Mary, K., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.PubMedCrossRefGoogle Scholar
  41. Geib, S. M., Tien, M., & Hoover, K. (2010). Identification of proteins involved in lignocellulose degradation using in gel zymogram analysis combined with mass spectroscopy-based peptide analysis of gut proteins from larval Asian longhorned beetles, Anoplophora glabripennis. Insect Science, 17, 253–264.CrossRefGoogle Scholar
  42. Gibney, E. (2014). Termite-inspired robots build castles. Nature.
  43. Girio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Lukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775–4800.PubMedCrossRefGoogle Scholar
  44. Grace, J. K. (1997). Biological control strategies for suppression of termites. Journal of Agricultural Entomology, 14, 281–289.Google Scholar
  45. Grace, J. K. (2003). Approaches to biological control of termites. Sociobiology, 41, 115–121.Google Scholar
  46. Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., & Nasri, M. (2009). Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: Purification, characterization and potential application as a laundry detergent additive. Bioresource Technology, 100, 3366–3373.PubMedCrossRefGoogle Scholar
  47. Hamilton, C., & Bulmer, M. S. (2012). Molecular antifungal defenses in subterranean termites: RNA interference reveals in vivo roles of termicins and GNBPs against a naturally encountered pathogen. Developmental and Comparative Immunology, 36, 372–377.PubMedCrossRefGoogle Scholar
  48. Hamilton, C., Lay, F., & Bulmer, M. S. (2011). Subterranean termite prophylactic secretions and external antifungal defenses. Journal of Insect Physiology, 57, 259–1266.CrossRefGoogle Scholar
  49. Hannon, G. J. (2002). RNA interference. Nature, 418, 244–251.PubMedCrossRefGoogle Scholar
  50. Hartke, T. R., & Baer, B. (2011). The mating biology of termites: A comparative review. Animal Behaviour, 82, 927–936.CrossRefGoogle Scholar
  51. Hattori, A., Sugime, Y., Sasa, C., Miyakawa, H., & Ishikawa, Y. (2013). Soldier morphogenesis in the dampwood termite is regulated by the insulin signaling pathway. The Journal of Experimental Zoology B, 320, 295–306.CrossRefGoogle Scholar
  52. Hayashi, Y., Lo, N., Miyata, H., & Kitade, O. (2007). Sex-linked genetic influence on caste determination in a termite. Science, 318, 985–987.PubMedCrossRefGoogle Scholar
  53. Heather, N. W. (1971). The exotic drywood termite Cryptotermes brevis (Walker) (Isoptera: Kalotermitidae) and endemic Australian drywood termites in Queensland. Australian Journal of Entomology, 10, 134–141.CrossRefGoogle Scholar
  54. Hmidet, N., Ali, N. E., Haddar, A., Kanoun, S., Alya, S., & Nasri, M. (2009). Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochemical Engineering Journal, 47, 71–79.CrossRefGoogle Scholar
  55. Holt, J. A. (1987). Carbon mineralization in semi-arid northeastern Australia: The role of termites. Journal of Tropical Ecology, 3, 255–263.CrossRefGoogle Scholar
  56. Holt, J. A., & Coventry, R. J. (1988). The effects of tree clearing and pasture establishment on a population of mound-building termites (Isoptera) in north Queensland, Australia. Australian Jorunal of Ecology, 13, 321–326.CrossRefGoogle Scholar
  57. Hongoh, Y. (2011). Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cellular and Molecular Life Sciences, 68, 1311–1325.PubMedCrossRefGoogle Scholar
  58. Howard, R. W., & Haverty, M. I. (1979a). Comparison of feeding substrates for evaluating effects of insect growth regulators on subterranean termites. Journal of Georgia Entomological Society, 14, 3–7.Google Scholar
  59. Howard, R. W., & Haverty, M. I. (1979b). Termites and juvenile hormone analogs: A review of methodology and observed effects. Sociobiology, 4, 269–278.Google Scholar
  60. Hrd’y, I., Kuldova, J., & Wimmer, Z. (2004). Juvenogens as potential agents in termite control: Laboratory screening. Pest Management Science, 60, 1035–1042.CrossRefGoogle Scholar
  61. Hrd’y, I., Kuldov’a, J., Hanus, R., & Wimmer, Z. (2006). Juvenile hormone III, hydroprene and a juvenogen as soldier caste differentiation regulators in three Reticulitermes species: Potential of juvenile hormone analogues in termite control. Pest Management Science, 62, 848–854.CrossRefGoogle Scholar
  62. Huang, S. W., Zhang, H. Y., Marshall, S., & Jackson, T. A. (2010). The scarab gut: A potential bioreactor for bio-fuel production. Insect Science, 17, 175–183.CrossRefGoogle Scholar
  63. Hungate, R. E. (1938). Studies on the nutrition of Zootermopsis II: The relative importance of the termite and the protozoa in wood digestion. Ecology, 19, 1–25.CrossRefGoogle Scholar
  64. Hussain, A., Li, Y. F., Cheng, Y., Liu, Y., Chen, C. C., & Wen, S. Y. (2013). Immune-related transcriptome of Coptotermes formosanus Shiraki workers: The defense mechanism. PloS One, 8, e69543.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Husseneder, C., & Grace, J. K. (2005). Genetically engineered termite gut bacteria (Enterobacter cloacae) deliver and spread foreign genes in termite colonies. Applied Microbiology and Biotechnology, 68, 360–367.PubMedCrossRefGoogle Scholar
  66. Huvenne, H., & Smagghe, G. (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. Journal of Insect Physiology, 56, 227–235.PubMedCrossRefGoogle Scholar
  67. James, C. (2003). Global review of commercialized transgenic crops. Current Science, 84, 303–309.Google Scholar
  68. Ji, R., & Brune, A. (2005). Digestion of peptidic residues in humic substances by an alkali stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biology and Biochemistry, 37, 1648–1655.CrossRefGoogle Scholar
  69. Jian-Zhong, S. & Scharf, M. E. (2010). Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Science, 17(3), 163–165.Google Scholar
  70. Johnson, E. (2009). Goodbye to carbon neutral: Getting biomass footprints right. Environmental Impact Assessment Review, 29, 165–168.CrossRefGoogle Scholar
  71. Jones, J. A. (1989). Environmental influences on soil chemistry in central semiarid Tanzania. Soil Science Society of America Journal, 53, 1748–1758.CrossRefGoogle Scholar
  72. Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.CrossRefGoogle Scholar
  73. Katayama, N., Ishikawa, Y., Takaoki, M., Yamashita, M., Nakayama, S., Kiguchi, K., Kok, R., Wada, H., & Mitsuhashi, J. (2008). Entomophagy: A key to space agriculture. Advances in Space Research, 41, 701–705.CrossRefGoogle Scholar
  74. Ke, J., Sun, J. Z., Nguyen, H. D., Singh, D., Lee, K. C., Beyenal, H., & Chen, S. L. (2010). In-situ oxygen profiling and lignin modification in guts of wood-feeding termites. Insect Science, 17, 277–290.CrossRefGoogle Scholar
  75. Ke, J., Laskar, D. D., & Chen, S. (2013). Tetramethyl ammonium hydroxide (TMAH) thermochemolysis for probing in situ softwood lignin modification in each gut segment of the termite. Journal of Agricultural and Food Chemistry, 61, 1299–1308.PubMedCrossRefGoogle Scholar
  76. Keya, S. O., Mureria, N. K., & Arshad, M. A. (1982). Population dynamics of soil microorganisms in relation to proximity of termite mounds in Kenya. Journal of Arid Environments, 5, 353–359.Google Scholar
  77. Kob, O. B., & Hewitt, P. H. (1990). Bird and mammal predators of the harvester termite Hodotermes mossambicus (Hagen) in semi-add regions of South Africa. South African Journal of Science, 86, 34–37.Google Scholar
  78. Kramm, K. R., West, D. F., & Rockenbach, P. G. (1982). Termite pathogens: Transfer of the entomopathogen Metarhizium anisopliae between Reticulitermes sp. termites. Journal of Invertebrate Pathology, 40, 1–6.CrossRefGoogle Scholar
  79. Lacey, L. A., Frutos, R., Kaya, H. K., & Vail, P. (2001). Insect pathogens as biological control agents: Do they have a future? Biological Control, 21, 230–248.CrossRefGoogle Scholar
  80. LaFage, J. P., & Nutting, W. L. (1978). Nutrient dynamics of termites. In M. V. Brian (Ed.), Production ecology of ants and termites (pp. 165–232). London: Cambridge University Press.Google Scholar
  81. Lamberty, M., Zachary, D., Lanot, R., Bordereau, C., Robert, A., & Hoffmann, J. A. (2001). Insect immunity constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. The Journal of the Biological Chemistry, 276, 4085–4092.CrossRefGoogle Scholar
  82. Landis, D. A., & Werling, B. P. (2010). Arthropods and biofuel production systems in North America. Insect Science, 17, 220–236.CrossRefGoogle Scholar
  83. Lawton, J. H., Bignell, D. E., Bloemers, G. F., Eggleton, P., & Hodda, M. E. (1996). Carbon flux and diversity of nematodes and termites in Cameroon forest soils forest soils. Biodiversity and Conservation, 5, 261–273.CrossRefGoogle Scholar
  84. Lee, K. E., & Wood, T. G. (1971). Termites and soils (p. 251). London: Academic.Google Scholar
  85. Lefeuve, P., & Bordereau, C. (1984). Soldier formation regulated by a primer pheromone from the soldier frontal gland in a higher termite, Nasutitermes lujae. Proceedings of the National Academy of Sciences of the United States of America, 81, 7665–7668.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lisansky, S. (1997). Microbial pesticides. In H. F. Evans (Ed.), Microbial insecticides: Novelty or necessity, British crop protection council monograph symposium proceedings (vol. 68, pp. 3–10).Google Scholar
  87. Liu, Y., Henderson, G., Mao, L., & Laine, R. A. (2005). Effects of temperature and nutrition on juvenile hormone titers of Coptotermes formosanus. Annals of the Entomological Society of America, 98, 732–737.CrossRefGoogle Scholar
  88. Lo, N., Tokuda, G., & Watanabe, H. (2011). Evolution and function of endogenous termite cellulases. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of Termites: A modern synthesis (pp. 51–67). Dordrecht: Springer.Google Scholar
  89. Logan, J. W. M. (1992). Termites (Isoptera) – a pest or resource for small farmers in Africa. Tropical Science, 32, 71–79.Google Scholar
  90. Logan, J. W. M., Cowie, R. H., & Wood, T. G. (1990). Termite (Isoptera) control in agriculture and forestry by non-chemical methods: A review. Bulletin of Entomological Research, 80, 309–330.CrossRefGoogle Scholar
  91. Logan, J. W. M., Rajagopal, D., Wightman, J. A., & Pearce, M. J. (1992). Control of termites and other soil pests of groundnuts with special reference to controlled released formulations of non-persistent insecticides in India and Sudan. Bulletin of Entomological Research, 82, 57–66.CrossRefGoogle Scholar
  92. Longhurst, C., Johnson, J. A., & Wood, T. G. (1978). Predation by Megaponera foetans (Fabr) (Hymenoptera; Formicidae) on termites in the Nigerian southern guinea savanna. Oecologia, 32, 101–107.PubMedCrossRefGoogle Scholar
  93. Machida, M., Kitade, O., Miura, T., & Matsumoto, T. (2001). Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insectes Sociaux, 48, 52–56.CrossRefGoogle Scholar
  94. Mamma, D., Hatzinikolaou, D., Kekos, D., Stamatis, H., & Kalogeris, E. (2009). Adsorption of major endoglucanase from Thermoascus aurantiacus on cellulosic substrates. World Journal of Microbiology and Biotechnology, 25, 781–788.CrossRefGoogle Scholar
  95. Martius, C. (1994). Diversity and ecology of termites in Amazo- nian forests. Pedobiologia, 38, 407–428.Google Scholar
  96. Mathew, G. M., Mathew, D. C., Lo, S. C., Alexios, G. M., Yang, J. C., Sashikumar, J. M., Shaikh, T. M., & Huang, C. C. (2013). Synergistic collaboration of gut symbionts in Odontotermes formosanus for lignocellulosic degradation and bio-hydrogen production. Bioresource Technology, 145, 337–344.PubMedCrossRefGoogle Scholar
  97. Matsuura, K. (2001). Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos, 92, 20–26.CrossRefGoogle Scholar
  98. Matsuura, K., Vargo, E. L., Kawatsu, K., Labadie, P. E., & Nakano, H. (2009). Queen succession through asexual reproduction in termites. Science, 323, 1687.PubMedCrossRefGoogle Scholar
  99. Mauldin, J. K., & Rich, N. M. (1980). Effect of chlortetracycline and other antibiotics on protozoan numbers in the eastern subterranean termite. Journal of Economic Entomology, 73, 123–128.CrossRefGoogle Scholar
  100. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals and biorefinery concept. Progress in Energy and Combustion Science, 38, 522–550.CrossRefGoogle Scholar
  101. Merheb-Dini, C., Gomes, E., Boscolo, M., & Silva, R. (2009). Production and characterization of a milk-clotting protease in the crude enzymatic extract from the newly isolated Thermomucor indicae-seudaticae N31 (milk-clotting protease from the newly isolated Thermomucor indicae-seudaticae N31). Food Chemistry, 120, 87–93.CrossRefGoogle Scholar
  102. Meyer, V. W. (1999). Distribution and density of termite mounds in the northern Kruger National Park with specific reference to those constructed by Macrotermes Holmgren (Isoptera: Termitidae). African Entomology, 7, 123–130.Google Scholar
  103. Meyer-Rochow, V. B. (2010). Entomophagy and its impact on world cultures: The need for a multidisciplinary approach. In P. B. Durst, D. V. Johnson, R. N. Leslie, & K. Shono (Eds.), Forest insects as food: Humans bite back (pp. 23–36). Thailand: Food and Agriculture Organization of the United Nations.Google Scholar
  104. Meyer-Rochow, V. B., & Chakravorty, J. (2013). Notes on entomophagy and entomotherapy generally and information on the situation in India in particular. Applied Entomology and Zoology, 48, 105–112.CrossRefGoogle Scholar
  105. Mielke, H. W., & Mielke, P. W. (1982). Termite mounds and chitemene agriculture: A statistical analysis of their association in southwestern Tanzania. Journal of Biogeography, 9, 499–504.CrossRefGoogle Scholar
  106. Misra, J. N., & Vijayaraghavan, P. K. (1956). Ethyl malonate – an inhibitor of termite cellulase. Current Science, 25, 229–230.Google Scholar
  107. Miura, T., & Scharf, M. E. (2011). Molecular basis underlying caste differentiation in termites. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 211–253). Dordrecht: Springer.Google Scholar
  108. Moorhead, D. L., & Reynolds, J. F. (1991). A general model of litter decomposition in the northern Chihuahuan desert. Ecological Modelling, 56, 197–219.CrossRefGoogle Scholar
  109. Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14, 578–597.CrossRefGoogle Scholar
  110. Naveena, B. M., Mendiratta, S. K., & Anjaneyulu, A. S. R. (2004). Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale Roscoe (Ginger rhizome). Meat Science, 68, 363–369.PubMedCrossRefGoogle Scholar
  111. NBDS. (2015). The national biotechnology development strategy (NBDS)-2015–2020. Department of Biotechnology. Ministry of Science & Technology, Government of India.
  112. Newmark, P. A., Reddien, P. W., Cebria, F., & Alvarado, A. S. (2003). Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proceedings of the National Academy of Sciences of the United States of America, 100, 11861–11865.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ni, J., & Tokuda, G. (2013). Ligno cellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances, 31, 838–850.PubMedCrossRefGoogle Scholar
  114. Noble, J. C., Diggle, P. J., & Whitford, W. G. (1989). The spatial distribution of termite pavements and hummock feeding sites on a semi-arid woodland in eastern Australia. Acta Oecologica/Oecologia Generalis, 10, 355–376.Google Scholar
  115. Nuss, A. B., Forschler, B. T., Crim, J. W., TeBrugge, V., Pohl, J., & Brown, M. R. (2010). Molecular characterization of neuropeptide F from the eastern subterranean termite Reticulitermes flavipes. Peptides, 31, 419–428.PubMedCrossRefGoogle Scholar
  116. Nyamapfene, K. W. (1986). The use of termite mounds in Zimbabwe peasant agriculture. Tropical Agriculture, 63, 191–192.Google Scholar
  117. Ogino, H., Otsubo, T., & Ishikawa, H. (2008). Screening, purification, and characterization of a leather-degrading protease. Biochemical Engineering Journal, 38, 234–240.CrossRefGoogle Scholar
  118. Ohkuma, M. (2003). Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology, 61, 1–9.PubMedCrossRefGoogle Scholar
  119. Ohkuma, M., & Brune, A. (2011). Diversity, structure, and evolution of the termite gut microbial community. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 413–438). Dordrecht: Springer.Google Scholar
  120. Okot-Kotber, B. M., Ujvary, I., Mollaaghahaba, R., Szurdoki, F., Matolcsy, G., & Prestwich, G. D. (1991). Physiological influence on fenoxycarb pro-insecticides and soldier head extracts of various termite species on soldier differentiation in Reticulitermes flavipes. Sociobiology, 19, 77–89.Google Scholar
  121. Olempska-Beer, Z. S., Merker, R. I., Ditto, M. D., & DiNovi, M. J. (2006). Food-processing enzymes from recombinant microorganisms –a review. Regulatory Toxicology and Pharmacology, 45, 144–158.PubMedCrossRefGoogle Scholar
  122. Oliviera, L. A., & Paiva, W. O. (1985). Use of termite nests and chicken manure as fertilizers for lettuce in red yellow podzolic soils of the Manaus region. Acta Amazonica, 15, 13–18.CrossRefGoogle Scholar
  123. Park, H. C., Majer, J. D., & Hobbs, R. J. (1994). Contribution of the Western Australian wheatbelt termite, Drepanotermes tamminensis (Hill), to the soil nutrient budget. Ecological Research, 9, 351–356.CrossRefGoogle Scholar
  124. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., & Cairney, J. (2006). The path forward for biofuels and biomaterials. Science, 311, 484–489.PubMedCrossRefGoogle Scholar
  125. Rajamohan, F., Lee, M. K., & Dean, D. H. (1998). Bacillus thuringiensis insecticidal proteins: Molecular mode of action. Progress in Nucleic Acid Research and Molecular Biology, 60, 1–27.PubMedCrossRefGoogle Scholar
  126. Ramakrishnan, R., Suiter, D. R., Nakatsu, C. H., Humber, R. D., & Bennett, G. W. (1999). Imidacloprid-enhanced Reticulitermes flavipes susceptibility to the entomopathogen Metarhizium anisopliae. Journal of Economic Entomology, 92, 1125–1132.CrossRefGoogle Scholar
  127. Ramos-Elorduy, J. (2005). Insects: A hopeful food source. In M. G. Paoletti (Ed.), Ecological implications of minilivestock (pp. 263–291). Enfield: Science Publishers.Google Scholar
  128. Rath, A. C. (2000). The use of entomopathogenic fungi for control of termites. Biocontrol Science and Technology, 10, 563–581.CrossRefGoogle Scholar
  129. Raubenheimer, D., & Rothman, J. (2012). Nutritional ecology of entomophagy in humans and other primates. Annual Review of Entomology, 58, 141–160.PubMedCrossRefGoogle Scholar
  130. Robinson, G. E. (1999). Integrative animal behavior and socio-genomics. Trends in Ecology & Evolution, 5, 202–205.CrossRefGoogle Scholar
  131. Robinson, G. E., Grozinger, C. M., & Whitfield, C. W. (2005). Socio-genomics: Social life in molecular terms. Nature Reviews Genetics, 6, 257–270.PubMedCrossRefGoogle Scholar
  132. Rosengaus, R. B., Traniello, J. F. A., & Bulmer, M. S. (2011). Ecology, behavior and evolution of disease resistance in termites. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 165–191). Dordrecht: Springer.Google Scholar
  133. Salick, J., Herrerra, R., & Jordan, C. F. (1983). Termitaria, nutrient patchiness in nutrient-deficient rain forests. Biotropica, 15, 1–7.CrossRefGoogle Scholar
  134. Schaefer, D. A., & Whitford, W. G. (1981). Nutrient cycling by the subterranean termite Gnathamitermes tubiformans in a Chihuahuan desert ecosystem. Oecologia, 48, 277–283.PubMedCrossRefGoogle Scholar
  135. Scharf, M. E. (2008). Silent pesticides. Chemistry and Industry Managemenet, 11, 20–23.Google Scholar
  136. Scharf, M. E. (2015). Termites as targets and models for biotechnology. Annual Review of Entomology, 60, 77–102.PubMedCrossRefGoogle Scholar
  137. Scharf, M. E., & Boucias, D. G. (2010). Potential of termite based biomass pre-treatment strategies for use in bioethanol production. Insect Science, 17, 166–174.CrossRefGoogle Scholar
  138. Scharf, M. E., & Tartar, A. (2008). Termite digestomes as sources for novel lignocellulases. Biofuels, Bioproducts and Biorefining, 2, 540–552.CrossRefGoogle Scholar
  139. Scharf, M. E., Ratliff, C. R., Hoteling, J. T., & Bennett, G. W. (2003). Caste differentiation responses of two sympatric Reticulitermes termite species to juvenile hormone homologs and synthetic juvenoids in two laboratory assays. Insectes Sociaux, 50, 346–354.CrossRefGoogle Scholar
  140. Scharf, M. E., Buckspan, C. E., Grzymala, T. L., & Zhou, X. (2007). Regulation of polyphenic caste differentiation in the termite Reticulitermes flavipes by interaction of intrinsic and extrinsic factors. The Journal of Experimental Biology, 210, 4390–4398.PubMedCrossRefGoogle Scholar
  141. Scharf, M. E., Kovaleva, E. S., Jadhao, S., Campbell, J. H., Buchman, G. W., & Boucias, D. G. (2010). Functional and translational analyses of a beta-glucosidase gene (glycosyl hydrolase family 1) isolated from the gut of the lower termite Reticulitermes flavipes. Insect Biochemistry and Molecular Biology, 40, 611–620.PubMedCrossRefGoogle Scholar
  142. Scharf, M. E., Karl, Z. J., Sethi, A., & Boucias, D. G. (2011). Multiple levels of synergistic collaboration in termite lignocellulose digestion. PloS One, 6, 21709.CrossRefGoogle Scholar
  143. Sen, R., Raychoudhury, R., Cai, Y., Sun, Y., Lietze, V. U., Boucias, D. G., & Scharf, M. E. (2013). Differential impacts of juvenile hormone, soldier head extract and alternate caste phenotypes on host and symbiont transcriptome composition in the gut of the termite Reticulitermes flavipes. BMC Genomics, 14, 491.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sethi, A., Slack, J. M., Kovaleva, E. S., Buchman, G. W., & Scharf, M. E. (2013). Lignin-associated metagene expression in a lignocellulose-digesting termite. Insect Biochemistry and Molecular Biology, 43, 91–101.PubMedCrossRefGoogle Scholar
  145. Shockley, M., & Dossey, A. T. (2014). Insects for human consumption. In J. Morales-Ramos, G. Rojas, & D. I. Shapiro-Ilan (Eds.), Mass production of beneficial organisms (pp. 617–652). New York: Academic.CrossRefGoogle Scholar
  146. Soares, C. A., Lima, C. M., Dolan, M. C., Piesman, J., Beard, C. B., & Zeidner, N. S. (2005). Capillary feeding of specific dsRNA induces silencing of the isac gene in nymphal Ixodes scapularis ticks. Insect Molecular Biology, 14, 443–452.PubMedCrossRefGoogle Scholar
  147. Solavan, A., Paulmurugan, R., & Wilsanand, V. (2006). Effect of the subterranean termite used in the South Indian folk medicine. Indian Journal of Traditional Knowledge, 5, 376–379.Google Scholar
  148. Souza, P. M., & Magalhães, P. O. (2010). Application of microbial α-amylase in industry– a review. Brazilian Journal of Microbiology, 41, 850–861.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Sun, J. Z., & Scharf, M. E. (2010). Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Science, 17(3), 163–165.CrossRefGoogle Scholar
  150. Sun, Q., & Zhou, X. (2013). Corpse management in social insects. International Journal of Biological Sciences, 9, 313–321.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Tan, A., & Wong, N. (2013). Parameterization studies of solar chimneys in the tropics. Energies, 6, 145–163.CrossRefGoogle Scholar
  152. Tartar, A., Wheeler, M. M., Zhou, X., Coy, M. R., Boucias, D. G., & Scharf, M. E. (2009). Parallel meta transcriptome analyses of host and symbiont gene expression in the gut of the termite R. flavipes. Biotechnology for Biofuels, 2, 25.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tarver, M. R., Zhou, X., & Scharf, M. E. (2010). Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes. BMC Molecular Biology, 11, 28.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Tarver, M. R., Florane, C. B., Zhang, D., Grimm, C., & Lax, A. R. (2012). Methoprene and temperature effects on caste differentiation and protein composition in the Formosan subterranean termite, Coptotermes formosanus. Insect Sci., 12, 18.Google Scholar
  155. Tayasu, I., Abe, T., Eggleton, P., & Bignell, D. E. (1997). Nitrogen and carbon isotope ratios in termites: An indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecological Entomology, 22, 343–351.CrossRefGoogle Scholar
  156. Terrapon, N., Li, C., Robertson, H. M., Ji, L., Meng, X., et al. (2014). Molecular traces of alternative social organization in a termite genome. Nature Communications, 5, 3636.PubMedCrossRefGoogle Scholar
  157. Timmons, L., & Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854.PubMedCrossRefGoogle Scholar
  158. Toga, K., Hojo, M., Miura, T., & Maekawa, K. (2009). Presoldier induction by a juvenile hormone analog in the nasute termite Nasutitermes takasagoensis. Zoological Science, 26, 382–328.PubMedCrossRefGoogle Scholar
  159. Tokuda, G., Watanabe, H., Matsumoto, T., & Noda, H. (1997). Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): Distribution of cellulases and properties of endo-beta-1,4-glucanase. Zoological Science, 14, 83–93.PubMedCrossRefGoogle Scholar
  160. USEPA. (2011). US Environmental Protection Agency: Policies concerning products containing nanoscale materials. Federal Register, 76, 2011–14943. EPA-HQ-OPP-2010-0197-0001.Google Scholar
  161. Van-Huis, H. (2003). Insects as food in Sub-Saharan Africa. Insect Science and its Application, 23, 163–185.Google Scholar
  162. Van-Huis, H. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, 563–583.PubMedCrossRefGoogle Scholar
  163. Vargo, E. L., & Parman, V. (2012). Effect of fipronil on subterranean termite colonies in the field. Journal of Economic Entomology, 105, 523–532.PubMedCrossRefGoogle Scholar
  164. Vasconcellos, A., & Moura, F. M. S. (2010). Wood litter consumption by three species of Nasutitermes termites in an area of the Atlantic Coastal Forest in northeastern Brazil. Journal of Insect Science, 10, 1–9.CrossRefGoogle Scholar
  165. Vaughn, T., Cavato, T., Brar, G., Coombe, T., Gooyer, D., Ford, S., Groth, M., Howe, A., Johnson, S., Kolacz, K., Pilcher, C., Purcell, J., Romano, C., English, L., & Pershing, J. (2005). A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Science, 45, 931–938.CrossRefGoogle Scholar
  166. Veivers, P. C., O’Brien, R. W., & Slaytor, M. (1982). Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing the entry of foreign bacteria. Journal of Insect Physiology, 28, 947–951.CrossRefGoogle Scholar
  167. Verma, M., Sharma, S., & Prasad, R. (2009). Biological alternatives for termite control: A review. International Biodeterioration and Biodegradation, 63, 959–972.CrossRefGoogle Scholar
  168. Waller, D. A., & LaFage, J. P. (1986). Nutritional ecology of termites. In F. Slansky Jr. & J. G. Rodriguez (Eds.), Nutritional ecology of insects, mites, spiders, and related invertebrates (pp. 487–532). New York: Wiley.Google Scholar
  169. Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., Podar, M., Martin, G. H., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., Szeto, E., Salamov, A., Barry, K., Mikhailova, N., Kyrpides, N. C., Matson, E. G., Ottesen, E. A., Zhang, X., Hernández, M., Murillo, C., Acosta, L. G., Rigoutsos, I., Tamayo, G., Green, B. D., Chang, C., Rubin, E. M., Mathur, E. J., Robertson, D. E., Hugenholtz, P., & Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a woodfeeding higher termite. Nature, 450, 560–565.PubMedCrossRefGoogle Scholar
  170. Watanabe, H., Noda, H., & Lo, N. A. (1998). A cellulase gene of termite origin. Nature, 394, 330–331.PubMedCrossRefGoogle Scholar
  171. Watson, J. P. (1977). The use of mounds of the termite Macroter- rues falciger (Gerstacker) as a soil amendment. Journal of Soil Science, 28, 664–672.CrossRefGoogle Scholar
  172. Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science, 343, 754–758.PubMedCrossRefGoogle Scholar
  173. Wimmer, Z., Jurcek, O., Jedlicka, P., Hanus, R., & Kuldova, J. (2007). Insect pest management agents: Hormonogen esters (juvenogens). Journal of Agricultural and Food Chemistry, 55, 7387–7393.PubMedCrossRefGoogle Scholar
  174. Wood, T. G., & Cowie, R. H. (1988). Assessment of on-farm losses in cereals in Africa due to soil insects. International Journal of Tropical Insect Science, 9, 709–716.CrossRefGoogle Scholar
  175. Zhang, D., Lax, A. R., Bland, J. M., Yu, J., Fedorova, N., & Nierman, W. C. (2010). Hydrolysis of filter-paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of Coptotermes formosanus. Insect Science, 17, 245–252.CrossRefGoogle Scholar
  176. Zhou, X., Oi, F. M., & Scharf, M. E. (2006). Social exploitation of hexamerin, RNAi reveals a major caste regulatory factor in termites. Proceedings of the National Academy of Sciences of the United States of America, 103, 4499–4504.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Zhou, X., Wheeler, M. M., Oi, F. M., & Scharf, M. E. (2008a). Inhibition of termite cellulases by carbohydrate-based cellulase inhibitors: Evidence from in vitro biochemistry and in vivo feeding studies. Pesticide Biochemistry and Physiology, 90, 31–41.CrossRefGoogle Scholar
  178. Zhou, X., Wheeler, M. M., Oi, F. M., & Scharf, M. E. (2008b). RNA interference in the termite Reticulitermes flavipes by ingestion of double-stranded RNA. Insect Biochemistry and Molecular Biology, 38, 805–815.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Entomology Research Laboratory, Department of ZoologyUniversity of KashmirSrinagarIndia
  2. 2.J.N. Medical CollegeAligarh Muslim UniversityAligarhIndia
  3. 3.Department of Commerce & ManagementUniversity of KashmirSrinagarIndia

Personalised recommendations