Termites and Standard Norms in Wood Protection: A Proposal Targeting Drywood Termites

  • Lara MaistrelloEmail author
Part of the Sustainability in Plant and Crop Protection book series (SUPP)


A standard is a technical document approved by a recognized certification body at national or international level, which defines and unifies the characteristics and specifications of a process, product or service, to ensure quality and safe, reliable performances in respect to environment. The use of international standards allows to remove barriers to world trade, and their importance is particularly recognized in the field of wood technology, to guarantee that preservatives are effective in protecting wood from biotic degradation agents, such as termites. In the European Union, the USA, Australia and Japan, the existing standard norms to test efficacy against termites are exclusively related to subterranean species (Rhinotermitidae). Due to the great differences in biological features, these standards are not suitable for drywood termites (Kalotermitidae) that, on the other hand, are increasingly indicated as serious wood pests, worldwide. This chapter aims at filling this gap by outlining the differences in biology, ecology and behaviour of the two types of termites and their importance as invasive pests, describing the importance and features of standard norms and reviewing the available standards for wood protection against termites. Finally, a proposal for a standard protocol is presented, specifically developed to determine the efficacy of preventive wood treatments on drywood termites.


Standard norms Termite management Wood preservatives Drywood termites Subterranean termites 


  1. Akhtari, M., & Nicholas, D. (2013). Evaluation of particulate zinc and copper as wood preservatives for termite control. European Journal of Wood and Wood Products, 71, 395–396.CrossRefGoogle Scholar
  2. American National Standards Institute (2016). ANSI-American National Standards Institute. Accessed 2 Sept 2016.
  3. American Wood Protection Association. (2016). AWPA – American Wood Protection Association – Standards for Treated Wood Since 1904. Accessed 2 Sept 2016.
  4. Becker, G., & Kny, U. (1977). Uberleben und Entwicklung der Trockenholz-Termite Cryptotermes brevis (Walker) in Berlin. Anz Fur Schadlingskunde Pflanzenschutz Umweltschutz, 50, 177–179.CrossRefGoogle Scholar
  5. Bergamonti, L., Berzolla, A., Chiappini, E., Feci, E., Maistrello, L., Palanti, S., Predieri, G., & Vaccari, G. (2016). Polyamidoamines (PAAs) functionalized with siloxanes as wood preservatives against fungi and insects. Holzforschung, 71(1), 65–75. Scholar
  6. Bignell, D. E., & Eggleton, P. (2000). Termites in ecosystems. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 363–387). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  7. Borges, P., & Myles, T. (2007). Termitas dos Acores. Lisbon: Principia Ed.Google Scholar
  8. Campora, C. E., & Grace, J. K. (2001). Tunnel orientation and search pattern sequence of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 94, 1193–1199.CrossRefPubMedGoogle Scholar
  9. Crosland, M. W., Traniello, J. F. A., & Scheffrahn, R. H. (2004). Social organization in the drywood termite, Cryptotermes cavifrons: Is there polyethism among instars? Ethology Ecology and Evolution, 16, 117–132.CrossRefGoogle Scholar
  10. Donovan, S. E., Eggleton, P., & Bignell, D. E. (2001). Gut content analysis and a new feeding group classification of termites (Isoptera). Ecological Entomology, 26, 356–366.CrossRefGoogle Scholar
  11. Eaton, R. A., & Hale, M. D. C. (1993). Wood: Decay, pests, and protection. London: Chapman and Hall.Google Scholar
  12. Eggleton, P., & Tayasu, I. (2001). Feeding groups, lifetypes and the global ecology of termites. Ecological Research, 16, 941–960.CrossRefGoogle Scholar
  13. Emerson, A. E. (1936). Distribution of termites. Science, 83, 410–411.CrossRefPubMedGoogle Scholar
  14. European Committee for Standardization. (2016). CEN – European Committee for Standardization Accessed 9 Sept 2016.
  15. Evans, T. A. (2010). Invasive termites. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 519–562). Dordrecht: Springer.CrossRefGoogle Scholar
  16. Evans, T. A., Inta, R., & Lai, J. C. S. (2011). Foraging choice and replacement reproductives facilitate invasiveness in drywood termites. Biological Invasions, 13, 1579–1587.CrossRefGoogle Scholar
  17. Evans, T. A., Forschler, B. T., & Grace, J. K. (2013). Biology of invasive termites: A worldwide review. Annual Review of Entomology, 58, 455–474.CrossRefPubMedGoogle Scholar
  18. Fontana, P., & Buzzetti, F. M. (2003). New record of Cryptotermes brevis Walker, 1853 in northern Italy (Insecta Isoptera Kalotermitidae). Boll Mus Civ Storia Nat Venezia, 54, 35–44.Google Scholar
  19. Freeman, M. H., Shupe, T. F., Vlosky, R. P., & Barnes, H. M. (2003). Past, present, and future of the wood preservation industry. Forest Products Journal, 53, 8–15.Google Scholar
  20. Gay, F. J. (1969). Species introduced by man. In K. Khrishna & F. M. Weesner (Eds.), Biology of termites (Vol. 1, pp. 459–494). New York: Academic.CrossRefGoogle Scholar
  21. Gentz, M. C., & Grace, J. K. (2006). A review of boron toxicity in insects with an emphasis on termites. Journal of Agricultural and Urban Entomology, 23, 201–207.Google Scholar
  22. Grace, J. K., Woodrow, R. J., & Oshiro, R. J. (2009). Expansive gallery systems of one-piece termites (Isoptera: Kalotermitidae). Sociobiology, 54, 37–44.Google Scholar
  23. Guerreiro, O., Cardoso, P., Ferreira, J. M., Ferreira, M. T., & Borges, P. V. (2014). Potential distribution and cost estimation of the damage caused by Cryptotermes brevis (Isoptera: Kalotermitidae) in the Azores. Journal of Economic Entomology, 107, 1554–1562.CrossRefPubMedGoogle Scholar
  24. Gulmahamad, H. (1997). Naturally occurring infestations of drywood termites in books. Pan-Pacific Entomologist, 73, 245–247.Google Scholar
  25. Hadi, Y. S., Nawawi, D. S., Herliyana, E. N., & Lawniczak, M. (1998). Termite attack resistance of four polystyrene-impregnated woods from Poland. Forest Products Journal, 48, 60–62.Google Scholar
  26. Hadi, Y. S., Westin, M., & Rasyid, E. (2005). Resistance of furfurylated wood to termite attack. Forest Products Journal, 55, 85–88.Google Scholar
  27. Hadi, Y. S., Nurhayati, T., Jasni, Y. H., & Kamiya, N. (2010). Smoked wood resistance against termite. Journal of Tropical Forest Science, 22, 127–132.Google Scholar
  28. Hadi, Y. S., Nurhayati, T., Jasni, Y. H., & Kamiya, N. (2012). Resistance of smoked wood to subterranean and dry-wood termite attack. International Biodeterioration and Biodegradation, 70, 79–81.CrossRefGoogle Scholar
  29. Han, G., Cheng, W., Manning, M., & Eloy, P. (2012). Performance of zinc borate-treated oriented structural straw board against mold fungi, decay fungi, and termites – a preliminary trial. BioResources, 7, 2986–2995.Google Scholar
  30. Hongoh, Y. (2010). Diversity and genomes of uncultured microbial symbionts in the termite gut. Bioscience, Biotechnology, and Biochemistry, 74, 1145–1151.CrossRefPubMedGoogle Scholar
  31. Hwang, W. J., Yoshimura, T., Tsunoda, K., & Imamura, Y. (2006). Efficacy of two alkylammonium compounds in controlling the attack on wood by western drywood termite, Incisitermes minor (Isoptera : Kalotermitidae). Sociobiology, 48, 471–478.Google Scholar
  32. IEO – WEI. (2016). What is WEI? Accessed 9 Sept 2016.
  33. International Organization for Standardization. (2016). ISO Standards. In ISO. Accessed 2 Sept 2016.
  34. Kartal, S. N., Terzi, E., Kose, C., Hofmeyr, J., & Imamura, Y. (2011). Efficacy of tar oil recovered during slow pyrolysis of macadamia nut shells. International Biodeterioration and Biodegradation, 65, 369–373.CrossRefGoogle Scholar
  35. Kartal, S. N., Terzi, E., Yoshimura, T., Arango, R., Clausen, C. A., & Green, F. (2012). Preliminary evaluation of storax and its constituents: Fungal decay, mold and termite resistance. International Biodeterioration and Biodegradation, 70, 47–54.CrossRefGoogle Scholar
  36. Kartal, S. N., Aysal, S., Terzi, E., Yilgor, N., Yoshimura, T., & Tsunoda, K. (2013). Wood and bamboo-PP composites: Fungal and termite resistance, water absorption, and FT-IR analyses. BioResources, 8, 1222–1244.CrossRefGoogle Scholar
  37. Korb, J., & Hartfelder, K. (2008). Life history and development – a framework for understanding developmental plasticity in lower termites. Biological Reviews, 83, 295–313.CrossRefPubMedGoogle Scholar
  38. Kose, C., Terzi, E., Kartal, S. N., Erilkun, B., & Imamura, Y. (2011). Preliminary evaluation of boron release and biological resistance of wood treated with disodium octoborate tetrahydrate (DOT) and a water-repellent compound. African Journal of Biotechnology, 10, 1833–1839.Google Scholar
  39. Krishna, K., Grimaldi, D. A., Krishna, V., & Engel, M. S. (2013). Treatise on the Isoptera of the world. Bulletin of the American Museum of Natural History, 377, 307–408.Google Scholar
  40. Kudo, T. (2009). Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Bioscience, Biotechnology, and Biochemistry, 73, 2561–2567.CrossRefPubMedGoogle Scholar
  41. Lee, S. H., Bardunias, P., & Su, N. Y. (2007). Optimal length distribution of termite tunnel branches for efficient food search and resource transportation. Biosystems Engineering, 90, 802–807.CrossRefGoogle Scholar
  42. Lewis, V. R. (2003). IPM for drywood termites (Isoptera: Kalotermitidae). Journal of Entomological Science, 38, 181–199.Google Scholar
  43. Lewis, V., & Forschler, B. (2014). Management of drywood termites: Past practices, present situation, and future prospects. In P. Dhang (Ed.), Urban insect pests: Sustainable management strategies (pp. 130–153). Boston: CABI.Google Scholar
  44. Lewis, V. R., Leighton, S., Tabuchi, R., Baldwin, J. A., & Haverty, M. I. (2013). Influence of environmental factors on activity patterns of Incisitermes minor (Isoptera: Kalotermitidae) in naturally infested logs. Journal of Economic Entomology, 106, 338–346.CrossRefPubMedGoogle Scholar
  45. Li, Z., Jiang, M., Ma, X., Jiang, Z., & Fei, B. (2012). A laboratory test of the leachability and decay resistance of some synthesized borate compounds. Forest Products Journal, 62, 134–138.CrossRefGoogle Scholar
  46. Liotta, G. (2005, February 22–27). Le termiti agenti di degrado delle strutture lignee dei beni culturali. In Proceedings of the international conference “Conservation of Historic Wooden Structures” (pp. 3–10), Florence.Google Scholar
  47. Maistrello, L., Berzolla, A., Macias-Pavon, I., Vignali, F., Predieri, G., & Chiappini, E. (2012a). Wood impregnated with metal chelates dissolved in organic media tested for termite resistance. Journal of Entomological and Acarological Research, 43, 277–285.CrossRefGoogle Scholar
  48. Maistrello, L., Martini, L., Macias-Pavon, I., Bortolini, S., & Marchettini, N. (2012b). Evaluation of polyphenols-rich natural compounds as treatments to prevent attacks by subterranean and drywood termites: Preliminary results. Journal of Entomological and Acarological Research, 43, 261–267.CrossRefGoogle Scholar
  49. Martinez, J. (1957). El termes de Madera seca (Cryptotermes brevis) en las islas Canarias. Montes, 147–161.Google Scholar
  50. Moein, S., & Rust, M. (1992). The effect of wood degradation by fungi on the feeding and survival of the west-Indian drywood termite, Cryptotermes brevis (Isoptera, Kalotermitidae). Sociobiology, 20, 29–39.Google Scholar
  51. Nami Kartal, S., Hwang, W.-J., Yamamoto, A., Tanaka, M., Matsumura, K., & Imamura, Y. (2007). Wood modification with a commercial silicon emulsion: Effects on boron release and decay and termite resistance. International Biodeterioration and Biodegradation, 60, 189–196.CrossRefGoogle Scholar
  52. Nunes, L., Gaju, M., Krecek, J., Molero, R., Teresa Ferreira, M., & De Roca, C. B. (2010). First records of urban invasive Cryptotermes brevis (Isoptera:Kalotermitidae) in continental Spain and Portugal. Journal of Applied Entomology, 134, 637–640.Google Scholar
  53. Raineri, V., Rey, A., Marini, M., & Zaffagnini, V. (2001). A new discovery of Cryptotermes brevis in genoa, Italy (Isoptera). Bollettino della Società Entomologica I taliana, 133, 99–102.Google Scholar
  54. Roisin, Y., & Korb, J. (2011). Social organisation and the status of workers in termites. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 133–164). Heidelberg: Springer.Google Scholar
  55. Rust, M. K., & Su, N. Y. (2012). Managing social insects of urban importance. Annual Review of Entomology, 57, 355–375.CrossRefPubMedGoogle Scholar
  56. Rust, M. K., Reierson, D. A., & Scheffrahn, R. H. (1979). Comparative habits, host utilization and xeric adaptations of the southwestern drywood termites, Incisitermes fruticavus rust and Incisitermes minor (Hagen). Sociobiology, 4, 239–255.Google Scholar
  57. Scheffrahn, R. H., & Crowe, W. (2011). Ship-borne termite (Isoptera) border interceptions in Australia and onboard infestations in Florida, 1986–2009. Florida Entomologist, 94, 57–63.CrossRefGoogle Scholar
  58. Scheffrahn, R. H., Krecek, J., Ripa, R., & Luppichini, P. (2008). Endemic origin and vast anthropogenic dispersal of the west Indian drywood termite. Biological Invasions, 11, 787–799.CrossRefGoogle Scholar
  59. Standards Australia. (2016). Standards Australia. Accessed 9 Sept 2016.
  60. Su, N. Y. (2005). Directional change in tunneling of subterranean termites (Isoptera: Rhinotermitidae) in response to decayed wood attractants. Journal of Economic Entomology, 98, 471–475.CrossRefPubMedGoogle Scholar
  61. Su, N. Y., & Puche, H. (2003). Tunneling activity of subterranean termites (Isoptera: Rhinotermitidae) in sand with moisture gradients. Journal of Economic Entomology, 96, 88–93.CrossRefPubMedGoogle Scholar
  62. Su, N. Y., & Scheffrahn, R. H. (1988). Foraging population and territory of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in an urban environment. Sociobiology, 14, 353–359.Google Scholar
  63. Suhasman, S., Nadi, Y. S., Massijaya, M. Y., & Santoso, A. (2012). Binder less particleboard resistance to termite attack. Forest Products Journal, 62, 412–415.CrossRefGoogle Scholar
  64. Sunarta, S., Darmadji, P., Uehara, T., & Katoh, S. (2011). Production and characterization of palm fruit shell bio-oil for wood preservation. Forest Products Journal, 61, 180–184.CrossRefGoogle Scholar
  65. Tascioglu, C., & Tsunoda, K. (2010). Laboratory evaluation of wood-based composites treated with alkaline copper quat against fungal and termite attacks. International Biodeterioration and Biodegradation, 64, 683–687.CrossRefGoogle Scholar
  66. Thorne, B. (1998). Biology of subterranean termites of the genus Reticulitermes. In NPCA research report on subterranean termites (pp. 1–30). Dunn Loring: National Pest Management Association.Google Scholar
  67. Timber Preservers Association of Australia. (2016). TPAA – Timber Preservers Association of Australia. Accessed 9 Sept 2016.
  68. Vargo, E. L., & Husseneder, C. (2009). Biology of subterranean termites: Insights from molecular studies of Reticulitermes and Coptotermes. Annual Review of Entomology, 54, 379–403.CrossRefPubMedGoogle Scholar
  69. Weesner, F. M. (1970). Termites of the Nearactic region. In K. Krishna & F. M. Weesner (Eds.), Biology of termites (Vol. 2, pp. 477–525). New York: Academic.Google Scholar
  70. Wu, Q., Lei, Y., Lian, K., & Qi, Y. (2012). Copper/carbon core shell nanoparticles as additive for natural fiber/wood plastic blends. BioResources, 7, 3213–3222.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze della VitaCentro Interdipartimentale BIOGEST-SITEIA, Università di Modena e Reggio EmiliaReggio EmiliaItaly

Personalised recommendations