Effect of Climate Change on Algae Valuable Source of Medicinal Natural Compounds

  • Morteza Yousefzadi
  • Mohammad Hossein Mirjalili


The word algae represent a large group of different organisms from different phylogenetic groups, representing many taxonomic divisions. They are distributed worldwide in the sea, in freshwater and in moist situations on land. Algae grow rapidly, produce useful products, and provide environmental benefits. Algae have potential as foods, and vitamins, bioactive substances, polysaccharides and other valuable commercial products and also are useful as raw material for future biofuel production and liquid fertilizer. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms) etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. Changes in global temperature and ocean chemistry associated with increasing greenhouse gas concentrations are forcing widespread shifts in biological systems. In response to warming, species ranges are shifting toward the poles, up mountainsides, and to deeper ocean depths. Concern for the environment and global climate change has increased in recent years, and algae can provide a number of significant environmental benefits. They remove carbon dioxide from the atmosphere, helping to reduce the harmful effects of the gas on climate change and the health of the environment. The aim of this chapter is to provide an overview of the current knowledge on these photosynthetic organisms regarding their environmental and pharmaceutical benefits.


Seaweed Microalgae Natural product Greenhouse gas 


  1. Adrian R, Reilly CMO, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297CrossRefGoogle Scholar
  2. Andrade PA, Barbosa M, Matos RP, Lopes G, Vinholes J (2013) Valuable compounds in macroalgae extracts. Food Chem 138:1819–1828CrossRefGoogle Scholar
  3. Beaugrand G, Edwards M, Legandre L (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. PNAS 107(22):10120–10124CrossRefGoogle Scholar
  4. Behrenfeld MJ, Malley RTO, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski P, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755CrossRefGoogle Scholar
  5. Bissenger JE, Montagnes SJ, Atkinson D (2008) Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol Oceanogr 53:487–493CrossRefGoogle Scholar
  6. Borowitzka MA (2013) High-value products from microalgae—their development and commercialization. J Appl Phycol 25(3):743–756CrossRefGoogle Scholar
  7. Buschmann AH, VaAquez J, Osorio P, Reyes E, Filun L, Hernandez-Gonzalez MC, Vega A (2004) The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Mar Biol 145:849–862CrossRefGoogle Scholar
  8. Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46(5):1394–1407CrossRefGoogle Scholar
  9. Christie H, Norderhaug KM, Fredriksen S (2009) Macrophytes as habitat for fauna. Mar Ecol Prog Ser 396:221–233CrossRefGoogle Scholar
  10. Chu SH, Zhang QS, Liu SK, Tang YZ, Zhang SB, Lu ZC, Yu YQ (2012) Tolerance of Sargassum thunbergii germlings to thermal, osmotic and desiccation stress. Aq Bot 96:1–6CrossRefGoogle Scholar
  11. De Boer MK (2005) Temperature responses of three Fibrocapsa japonica strains (Raphidophyceae) from different climate regions. J Plankton Res 27(1):47–60CrossRefGoogle Scholar
  12. Doney SC, Ruckelshaus M, Duffy JM, Barry JP, Chan F, English CA et al (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37CrossRefGoogle Scholar
  13. Eggert A (2012) Seaweed responses to temperature. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer-Verlag, Berlin, Germany, pp 47–66CrossRefGoogle Scholar
  14. Fan X, Bai L, Zhu L, Yang L, Zhang X (2014) Marine Algae-derived bioactive peptides for human nutrition and health. J Agric Food Chem 62:9211–9222CrossRefGoogle Scholar
  15. Guinder VA, Molinero JC (2013) Climate change effects on marine phytoplankton. In: Menendez MC (ed) Marine ecology in a changing world. CRC PressCrossRefGoogle Scholar
  16. Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA (2012) Effects of climate change on global seaweed communities. J Phycol 48(5):1064–1068CrossRefGoogle Scholar
  17. Hudek K, Davis LC, Ibbini J, Erickson L (2014) Commercial products from algae. In: Bajpai R et al. (eds) Algal Biorefineries Part II, pp 275–295Google Scholar
  18. Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3(5):1356–1373CrossRefGoogle Scholar
  19. Keeling RF, Ortzinger KA, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229CrossRefGoogle Scholar
  20. Kim E, Park HS, Jung Y, Choi DW, Jeong WJ, Hwang MS, Park EJ, Gong YG (2011) Identification of the high-temperature response genes from Porphyraseriata (Rhodophyta) expression sequence tags and enhancement of heat tolerance of Chlamydomonas (Chlorophyta) by expression of the Porphyra HTR2 gene. J Phycol 47:821–828CrossRefGoogle Scholar
  21. Kingsolver JG (2009) The well-temperatured biologist. Am Nat 174(6):755–768PubMedGoogle Scholar
  22. Kiuru P, Auria MD, Muller CD, Tammela P, Vuorela H, Yli-Kauhaluoma J (2014) Exploring marine resources for bioactive compounds. Planta Med 80:1234–1246CrossRefGoogle Scholar
  23. Koch M, Bowes G, Ross C, Zhang XH (2012) Climate change and ocean acidification effects on sea grasses and marine macroalgae. Glob Chang Biol 19(1):103–132CrossRefGoogle Scholar
  24. Kordas RL, Harley CDG, O’Connor MI (2011) Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J Exp Mar Biol Ecol 400:218–26Google Scholar
  25. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434CrossRefGoogle Scholar
  26. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Ann Rev Plant Biol 55:591–628CrossRefGoogle Scholar
  27. Lopes G, Sousa C, Silva LR, Pinto E, Andrade PB, Bernardo J et al (2012) Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions? PLoS One 7(2):e31145CrossRefGoogle Scholar
  28. Paerl HW, Huisman VJ (2009a) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1(1): 27–37CrossRefGoogle Scholar
  29. Paerl HW, Huisman VJ (2009b) Climate change: Links to global expansion of harmful cyanobacteria. Water Res 46(5):1349–1363CrossRefGoogle Scholar
  30. Paerl HW, Hall NS, Calandrino E (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409(10):1739–1745CrossRefGoogle Scholar
  31. Paerl HW, Gardner WS, Havens KE, Joyner AR, McCarthy MJ (2016) Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54:213–222CrossRefGoogle Scholar
  32. Rinke K, Yeates P, Rothhaupt K (2010) A simulation study of the feedback of phytoplankton on thermal structure via light extinction. Freshwat Biol 55:1674–1693Google Scholar
  33. Sommer U, Lewandowska A (2011) Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob Chang Biol 17:154–162CrossRefGoogle Scholar
  34. Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Chang 2:686–690CrossRefGoogle Scholar
  35. Wells ML, Vera LT, Smayda TJ, Karlson BSO, Trick CG, Raphael MK (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93CrossRefGoogle Scholar
  36. Williams SL, Dethier MN (2005) High and dry: variation in net photosynthesis of the intertidal seaweed Fucusgardneri. Ecology 86:2373–2379CrossRefGoogle Scholar
  37. Winder M, Sommer U (2012) Phytoplankton response to a changing climate. Hydrobiologia 698:5–16CrossRefGoogle Scholar
  38. Zacharioudaki A, Pan SQ, Simmonds D, Magar V, Reeve DE (2011) Future wave climate over the West-European shelf seas. Ocean Dynam 61:807–827CrossRefGoogle Scholar
  39. Zubia M, Fabre MS, Kerjean V, Deslandes E (2009) Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Bot Mar 52:268–277Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Morteza Yousefzadi
    • 1
  • Mohammad Hossein Mirjalili
    • 2
  1. 1.Department of Marine Biology, Faculty of Marine Science and TechnologyUniversity of HormozganBandar AbbasIran
  2. 2.Medicinal Plants and Drugs Research InstituteShahid Beheshti University, G. C.EvinIran

Personalised recommendations