Building Real Stackelberg Security Games for Border Patrols

  • Victor BucareyEmail author
  • Carlos CasorránEmail author
  • Óscar Figueroa
  • Karla Rosas
  • Hugo Navarrete
  • Fernando OrdóñezEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10575)


We present a decision support system to help plan preventive border patrols. The system represents the interaction between defenders and intruders as a Stackelberg security game (SSG) where the defender pools local resources to conduct joint preventive border patrols. We introduce a new SSG that constructs defender strategies that pair adjacent precincts to pool resources that are used to patrol a location within one of the two precincts. We introduce an efficient formulation of this problem and an efficient sampling method to construct an implementable defender strategy.

The system automatically constructs the Stackelberg game from geographically located past crime data, topology and cross border information. We use clustering of past crime data and logit probability distribution to assign risk to patrol areas. Our results on a simplified real-world inspired border patrol instance show the computational efficiency of the model proposed, its robustness with respect to parameters used in automatically constructing the instance, and the quality of the sampled solution obtained.


Stackelberg games Security application Border patrol 



Casorrán wishes to acknowledge the FNRS for funding his PhD research through a FRIA grant. This work is also partially supported by the Interuniversity Attraction Poles Programme P7/36 “COMEX” initiated by the Belgian Science Policy Office. Ordóñez acknowledges the support by CONICYT through Fondecyt grant 1140807 and the Complex Engineering Systems Institute, ISCI (CONICYT: FB0816).


  1. 1.
    Council of the EU: European border and coast guard: final approval (2016). Accessed Feb 2017
  2. 2.
    Department of Homeland Security: Border security (2017). Accessed Feb 2017
  3. 3.
    von Stackelberg, H.: Principios de teoria economica. Oxford University Press, New York (1952)Google Scholar
  4. 4.
    Bracken, J., McGill, J.T.: Mathematical programs with optimization problems in the constraints. Oper. Res. 21(1), 37–44 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Jain, M., Tsai, J., Pita, J., Kiekintveld, C., Rathi, S., Tambe, M., Ordóñez, F.: Software assistants for randomized patrol planning for the lax airport police and the federal air marshal service. Interfaces 40(4), 267–290 (2010)CrossRefGoogle Scholar
  6. 6.
    Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B., Meyer, G.: Protect: a deployed game theoretic system to protect the ports of the United States. In: Richland, S. (ed.) Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012, Richland, SC, vol. 1, pp. 13–20. International Foundation for Autonomous Agents and Multiagent Systems (2012)Google Scholar
  7. 7.
    Yin, Z., Jiang, A.X., Tambe, M., Kiekintveld, C., Leyton-Brown, K., Sandholm, T., Sullivan, J.P.: Trusts: scheduling randomized patrols for fare inspection in transit systems using game theory. AI Mag. 33(4), 59–72 (2012)CrossRefGoogle Scholar
  8. 8.
    Yang, R., Ford, B., Tambe, M., Lemieux, A.: Adaptive resource allocation for wildlife protection against illegal poachers. In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2014)Google Scholar
  9. 9.
    Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., Tambe, M.: Computing optimal randomized resource allocations for massive security games. In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, Richland, SC, vol. 1, pp. 689–696. International Foundation for Autonomous Agents and Multiagent Systems (2009)Google Scholar
  10. 10.
    Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordóñez, F., Kraus, S.: Playing games for security: an efficient exact algorithm for solving Bayesian Stackelberg games. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2008, Richland, SC, vol. 2, pp. 895–902. International Foundation for Autonomous Agents and Multiagent Systems (2008)Google Scholar
  11. 11.
    Leitman, G.: On generalized Stackelberg strategies. J. Optim. Theor. Appl. 26(4), 637–643 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Edmonds, J.: Maximum matching and a polyhedron with 0, l-vertices. J. Res. Nat. Bur. Stand. B 69(1965), 125–130 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Farkas, J.: Theorie der einfachen ungleichungen. Journal für die reine und angewandte Mathematik 124, 1–27 (1902)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  15. 15.
    QGIS: QGIS Geographic Information System. Open Source Geospatial Foundation (2009)Google Scholar
  16. 16.
    Comisión Económica para América Latina y el Caribe: Costo económico de los delitos, niveles de vigilancia y políticas de seguridad ciudadana en las comunas del gran santiago (2000).
  17. 17.
    Aduanas de Chile: Qué tributos deben pagar las importaciones? (2016).
  18. 18.
    Ministerio del Trabajo y Previsión Social: Reajusta monto del ingreso mínimo mensual, de la asignación familiar y maternal del subsidio familiar, para los periodos que indica (2016).
  19. 19.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de Ingeniería IndustrialUniversidad de ChileSantiagoChile
  2. 2.Département d’InformatiqueUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Carabineros de ChileSantiagoChile

Personalised recommendations