Advertisement

The Minimum Shared Edges Problem on Grid-Like Graphs

  • Till FluschnikEmail author
  • Meike Hatzel
  • Steffen Härtlein
  • Hendrik Molter
  • Henning Seidler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10520)

Abstract

We study the \({\mathsf {NP}}\)-hard Minimum Shared Edges (MSE) problem on graphs: decide whether it is possible to route p paths from a start vertex to a target vertex in a given graph while using at most k edges more than once. We show that MSE can be decided on bounded (i.e. finite) grids in linear time when both dimensions are either small or large compared to the number p of paths. On the contrary, we show that MSE remains \({\mathsf {NP}}\)-hard on subgraphs of bounded grids.

Finally, we study MSE from a parametrised complexity point of view. It is known that MSE is fixed-parameter tractable with respect to the number p of paths. We show that, under standard complexity-theoretical assumptions, the problem parametrised by the combined parameter kp, maximum degree, diameter, and treewidth does not admit a polynomial-size problem kernel, even when restricted to planar graphs.

References

  1. 1.
    Alanko, S., Crevals, S., Isopoussu, A., Östergård, P.R.J., Pettersson, V.: Computing the domination number of grid graphs. Electron. J. Comb. 18(1), 18 p. (2011). http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p141
  2. 2.
    Aoki, Y., Halldórsson, B.V., Halldórsson, M.M., Ito, T., Konrad, C., Zhou, X.: The minimum vulnerability problem on specific graph classes. J. Comb. Optim. 32(4), 1288–1304 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Assadi, S., Emamjomeh-Zadeh, E., Norouzi-Fard, A., Yazdanbod, S., Zarrabi-Zadeh, H.: The minimum vulnerability problem. Algorithmica 70(4), 718–731 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Bhatia, D., Leighton, T., Makedon, F., Norton, C.H.: Improved algorithms for routing on two-dimensional grids. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 114–122. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-56402-0_41 CrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L., Jansen, B.M., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21275-3 CrossRefzbMATHGoogle Scholar
  7. 7.
    Diestel, R.: Graph Theory. GTM, 4th edn. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-662-53622-3. vol. 173CrossRefzbMATHGoogle Scholar
  8. 8.
    Fluschnik, T.: The parameterized complexity of finding paths with shared edges. Master’s thesis, TU Berlin, March 2015. http://fpt.akt.tu-berlin.de/publications/theses/MA-till-fluschnik.pdf
  9. 9.
    Fluschnik, T., Kratsch, S., Niedermeier, R., Sorge, M.: The parameterized complexity of the minimum shared edges problem. In: Proceedings of the 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015. LIPIcs, vol. 45, pp. 448–462. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  10. 10.
    Fluschnik, T., Morik, M., Sorge, M.: The complexity of routing with few collisions. In: Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 257–270. Springer, Berlin (2017).  https://doi.org/10.1007/978-3-662-55751-8_21 CrossRefGoogle Scholar
  11. 11.
    Fluschnik, T., Sorge, M.: The minimum shared edges problem on planar graphs. arXiv preprint arXiv:1602.01385 (2016)
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  13. 13.
    Jelínek, V.: The rank-width of the square grid. Discrete Appl. Math. 158(7), 841–850 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Kanchanasut, K.: A shortest-path algorithm for Manhattan graphs. Inf. Process. Lett. 49(1), 21–25 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Kanté, M.M., Moataz, F.Z., Momège, B., Nisse, N.: Finding paths in grids with forbidden transitions. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 154–168. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53174-7_12 CrossRefGoogle Scholar
  16. 16.
    Maxemchuk, N.: Routing in the Manhattan street network. IEEE Trans. Commun. 35(5), 503–512 (1987)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Omran, M.T., Sack, J.R., Zarrabi-Zadeh, H.: Finding paths with minimum shared edges. J. Comb. Optim. 26(4), 709–722 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Varvarigos, E.A.: Optimal communication algorithms for Manhattan street networks. Discrete Appl. Math. 83(1–3), 303–326 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Ye, Z.Q., Li, Y.M., Lu, H.Q., Zhou, X.: Finding paths with minimum shared edges in graphs with bounded treewidth. In: Proceedings of the 9th International Conference on Foundations of Computer Science, FCS 2013, pp. 40–46 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Till Fluschnik
    • 1
    Email author
  • Meike Hatzel
    • 1
  • Steffen Härtlein
    • 1
  • Hendrik Molter
    • 1
  • Henning Seidler
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany

Personalised recommendations