Skip to main content

Approximately Coloring Graphs Without Long Induced Paths

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10520))

Included in the following conference series:

  • 677 Accesses

Abstract

It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on t vertices, for fixed t. We propose an algorithm that, given a 3-colorable graph without an induced path on t vertices, computes a coloring with \(\max \left\{ 5,2\left\lceil \frac{t-1}{2}\right\rceil -2\right\} \) many colors. If the input graph is triangle-free, we only need \(\max \left\{ 4,\left\lceil \frac{t-1}{2}\right\rceil +1\right\} \) many colors. The running time of our algorithm is \(O((3^{t-2}+t^2)m+n)\) if the input graph has n vertices and m edges.

M. Chudnovsky—Supported by NSF grant DMS-1550991.

S. Spirkl—Supported by Fondecyt grant 1140766 and Millennium Nucleus Information and Coordination in Networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chlamtac, E.: Approximation algorithms using hierarchies of semidefinite programming relaxations. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007) (2007)

    Google Scholar 

  2. Bonomo, F., Chudnovsky, M., Maceli, P., Schaudt, O., Stein, M., Zhong, M.: Three-coloring and list three-coloring graphs without induced paths on seven vertices (2015, preprint)

    Google Scholar 

  3. Chuzhoy, J.: Private communication

    Google Scholar 

  4. Dinur, I., Mossel, E., Regev, O.: Conditional hardness for approximate coloring. SIAM J. Comput. 39, 843–873 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edwards, K.: The complexity of colouring problems on dense graphs. Theoret. Comput. Sci. 43, 337–343 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Congr. Numer. 26, 125–157 (1979)

    MATH  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: A Guide to the Theory of NP-Completeness. W.H. Freemann, New York (1979)

    MATH  Google Scholar 

  8. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: Survey on the computational complexity of colouring graphs with forbidden subgraphs. J. Graph Theory (to appear). doi:10.1002/jgt.22028

  9. Gyárfás, A.: Problems from the world surrounding perfect graphs. Applicationes Mathematicae 19(3–4), 413–441 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding \(k\)-colorability of \(P_5\)-free graphs in polynomial time. Algorithmica 57(1), 74–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, S.: Improved complexity results on \(k\)-coloring \(P_t\)-free graphs. Eur. J. Comb. 51, 336–346 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kamiński, M., Lozin, V.: Coloring edges and vertices of graphs without short or long cycles. Contrib. Discret. Math. 2, 61–66 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  15. Kawarabayashi, K.-I., Thorup, M.: Coloring 3-colorable graphs with \(o (n^{1/5})\) colors. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 25. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

    Google Scholar 

  16. Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbidden induced subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001). doi:10.1007/3-540-45477-2_23

    Chapter  Google Scholar 

  17. Leven, D., Galil, Z.: NP-completeness of finding the chromatic index of regular graphs. J. Algorithms 4, 35–44 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz 29(3), 10 (1976)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

We are thankful to Paul Seymour for many helpful discussions. We thank Stefan Hougardy for pointing out [15] to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schaudt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chudnovsky, M., Schaudt, O., Spirkl, S., Stein, M., Zhong, M. (2017). Approximately Coloring Graphs Without Long Induced Paths. In: Bodlaender, H., Woeginger, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2017. Lecture Notes in Computer Science(), vol 10520. Springer, Cham. https://doi.org/10.1007/978-3-319-68705-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68705-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68704-9

  • Online ISBN: 978-3-319-68705-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics