Skip to main content

The Hardness of Embedding Grids and Walls

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10520)

Abstract

The dichotomy conjecture for the parameterized embedding problem states that the problem of deciding whether a given graph G from some class \(\mathcal K\) of “pattern graphs” can be embedded into a given graph H (that is, is isomorphic to a subgraph of H) is fixed-parameter tractable if \(\mathcal K\) is a class of graphs of bounded tree width and \(W [1]\)-complete otherwise.

Towards this conjecture, we prove that the embedding problem is \(W [1]\)-complete if \(\mathcal K\) is the class of all grids or the class of all walls.

Full version available at https://arxiv.org/abs/1703.06423.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68705-6_14
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-68705-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    There is a minor issue here regarding the computability of the class \(\mathcal K\): if we want to include classes \(\mathcal K\) that are not recursively enumerable here then we need the nonuniform notion of fixed-parameter tractability [11].

  2. 2.

    If \(\mathcal K\) is not recursively enumerable, there is still a “non-uniform” hardness result. See [13] for a discussion.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Bodirsky, M., Grohe, M.: Non-dichotomies in constraint satisfaction complexity. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 184–196. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_16

    CrossRef  Google Scholar 

  3. Chen, H., Müller, M.: One hierarchy spawns another: graph deconstructions and the complexity classification of conjunctive queries. In: Proceedings of the Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 32:1–32:10 (2014)

    Google Scholar 

  4. Chen, Y., Thurley, M., Weyer, M.: Understanding the complexity of induced subgraph isomorphisms. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 587–596. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_48

    CrossRef  Google Scholar 

  5. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    CrossRef  MATH  Google Scholar 

  6. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 310–326. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46135-3_21

    CrossRef  Google Scholar 

  7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-662-53622-3

    MATH  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0515-9

    CrossRef  MATH  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theoret. Comput. Sci. 141, 109–131 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3, 1–27 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    MATH  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  13. Grohe, M.: The complexity of homomorphism, constraint satisfaction problems seen from the other side. J. ACM 54(1), 1:1–1:24 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Grohe, M., Schwentick, T., Segoufin, L.: When is the evaluation of conjunctive queries tractable. In: Proceedings on the 33rd Annual ACM Symposium on Theory of Computing, Heraklion, Crete, Greece, 6–8 July 2001, pp. 657–666 (2001)

    Google Scholar 

  15. Jansen, B.M.P., Marx, D.: Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernels. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6 January 2015, pp. 616–629 (2015)

    Google Scholar 

  16. Lin, B.: The parameterized complexity of k-biclique. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6 January 2015, pp. 605–615 (2015)

    Google Scholar 

  17. Marx, D., Pilipczuk, M.: Everything you always wanted to know about the parameterized complexity of subgraph isomorphism (but were afraid to ask). ArXiv (CoRR), abs/1307.2187 (2013)

    Google Scholar 

  18. Matula, D.W.: Subtree isomorphism in \(o(n^{5/2})\). In: Alspach, P.H.B., Miller, D. (eds.) Algorithmic Aspects of Combinatorics. Annals of Discrete Mathematics, vol. 2, pp. 91–106. Elsevier (1978)

    Google Scholar 

  19. Monien, B.: How to find longest paths efficiently. In: Analysis and Design of Algorithms for Combinatorial Problems. North Holland Mathematics Studies, vol. 109, pp. 239–254. North Holland (1985)

    Google Scholar 

  20. Plehn, J., Voigt, B.: Finding minimally weighted subgraphs. In: Möhring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 18–29. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-53832-1_28

    CrossRef  Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors V. Excluding a planar graph. J. Comb. Theory Ser. B 41, 92–114 (1986)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Ullman, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Yijia Chen is partially supported by the Sino-German Center for Research Promotion (CDZ 996) and National Nature Science Foundation of China (Project 61373029). Bingkai Lin is partially supported by the JSPS KAKENHI Grant (JP16H07409) and JST ERATO Grant (JPMJER1201) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingkai Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Grohe, M., Lin, B. (2017). The Hardness of Embedding Grids and Walls. In: Bodlaender, H., Woeginger, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2017. Lecture Notes in Computer Science(), vol 10520. Springer, Cham. https://doi.org/10.1007/978-3-319-68705-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68705-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68704-9

  • Online ISBN: 978-3-319-68705-6

  • eBook Packages: Computer ScienceComputer Science (R0)