Skip to main content

Token Sliding on Chordal Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10520))

Included in the following conference series:

Abstract

Let I be an independent set of a graph G. Imagine that a token is located on every vertex of I. We can now move the tokens of I along the edges of the graph as long as the set of tokens still defines an independent set of G. Given two independent sets I and J, the Token Sliding problem consists in deciding whether there exists a sequence of independent sets which transforms I into J so that every pair of consecutive independent sets of the sequence can be obtained via a single token move. This problem is known to be PSPACE-complete even on planar graphs.

In [9], Demaine et al. asked whether the Token Sliding problem can be decided in polynomial time on interval graphs and more generally on chordal graphs. Yamada and Uehara [20] showed that a polynomial time transformation can be found in proper interval graphs.

In this paper, we answer the first question of Demaine et al. and generalize the result of Yamada and Uehara by showing that we can decide in polynomial time whether an independent set I of an interval graph can be transformed into another independent set J. Moreover, we answer similar questions by showing that: (i) determining if there exists a token sliding transformation between every pair of k-independent sets in an interval graph can be decided in polynomial time; (ii) deciding this latter problem becomes co-NP-hard and even co-W[2]-hard (parameterized by the size of the independent set) on split graphs, a sub-class of chordal graphs.

N. Bousquet—Supported by ANR Projects STINT (ANR-13-BS02-0007) and LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs. Electron. Notes Discret. Math. 44, 257–262 (2013). (LAGOS 2013)

    Article  Google Scholar 

  2. Bonamy, M., Bousquet, N.: Reconfiguring independent sets in cographs. CoRR, abs/1406.1433 (2014)

    Google Scholar 

  3. Bonamy, M., Bousquet, N.: Token sliding on chordal graphs. CoRR, abs/1605.00442 (2016)

    Google Scholar 

  4. Bonamy, M., Bousquet, N., Feghali, C., Johnson, M.: On a conjecture of Mohar concerning Kempe equivalence of regular graphs. CoRR, abs/1510.06964 (2015)

    Google Scholar 

  5. Bonsma, P.: The complexity of rerouting shortest paths. Theoret. Comput. Sci. 510, 1–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonsma, P.: Independent set reconfiguration in cographs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 105–116. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_9

    Google Scholar 

  7. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-free graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 86–97. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_8

    Chapter  Google Scholar 

  8. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demaine, E.D., et al.: Polynomial-time algorithm for sliding tokens on trees. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 389–400. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0_31

    Google Scholar 

  10. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  11. Feghali, C., Johnson, M., Paulusma, D.: A reconfigurations analogue of Brooks’ theorem and its consequences. CoRR, abs/1501.05800 (2015)

    Google Scholar 

  12. Feghali, C., Johnson, M., Paulusma, D.: Kempe equivalence of colourings of cubic graphs. CoRR, abs/1503.03430 (2015)

    Google Scholar 

  13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York Inc., New York (2006). https://doi.org/10.1007/3-540-29953-X

    MATH  Google Scholar 

  14. Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hearn, R., Demaine, E.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1–2), 72–96 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ito, T., Demaine, E., Harvey, N., Papadimitriou, C., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theoret. Comput. Sci. 412(12–14), 1054–1065 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kamiński, M., Medvedev, P., Milaniĉ, M.: Complexity of independent set reconfigurability problems. Theoret. Comput. Sci. 439, 9–15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: 8th International Symposium on Parameterized and Exact Computation, IPEC 2013, pp. 281–294 (2013)

    Google Scholar 

  19. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, pp. 127–160. Cambridge University Press, Cambridge (2013)

    Chapter  Google Scholar 

  20. Yamada, T., Uehara, R.: Shortest reconfiguration of sliding tokens on a caterpillar. In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 236–248. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bousquet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonamy, M., Bousquet, N. (2017). Token Sliding on Chordal Graphs. In: Bodlaender, H., Woeginger, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2017. Lecture Notes in Computer Science(), vol 10520. Springer, Cham. https://doi.org/10.1007/978-3-319-68705-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68705-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68704-9

  • Online ISBN: 978-3-319-68705-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics