Skip to main content

Mechanisms and Functions of Post-translational Enzyme Modifications in the Organization and Control of Plant Respiratory Metabolism

  • Chapter
  • First Online:
Book cover Plant Respiration: Metabolic Fluxes and Carbon Balance

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 43))

Summary

The respiratory pathways of glycolysis, the tricarboxylic acid (TCA) cycle, and mitochondrial electron transport chain are central features of carbon metabolism and bioenergetics in eukaryotic cells. As respiration forms the core of intermediary metabolism, it plays a pivotal role in the growth and metabolism of all photosynthetic organisms. The aim of this chapter is to provide an overview of the occurrence and functions of enzyme post-translational modifications (PTMs) in the control of plant respiration including sucrose catabolism. PTMs are covalent alterations of amino acid residues within a particular polypeptide. Diverse PTMs represent pivotal regulatory events that integrate signaling, gene expression, and metabolism with developmental and stress responses in eukaryotic cells. These PTMs are often rapid and reversible and can not only dramatically alter enzyme activity, but may also generate specific PTM-dependent docking sites that influence interactions with other proteins. In yeast, enzyme PTMs exert more control over glycolysis and mitochondrial metabolism than do changes in transcripts or enzyme abundance, and the same situation likely applies to vascular plants. Recent advances in proteomics , particularly the development of novel and specific chemistries along with affiliated mass spectrometry techniques for detection and mapping of diverse PTMs, are rapidly expanding the catalogue of respiratory enzymes whose functions may be controlled by reversible covalent modification. Phosphorylation-dephosphorylation and disulfide-dithiol interconversion appear to be the most prevalent types of reversible covalent modification used in plant enzyme control. Additional PTMs such as monoubiquitination, S-nitrosylation, and acetylation also appear to play important roles. However, the biochemical impact of in vivo PTMs on the functional properties of plant respiratory enzymes remains mostly unknown and thus remains an important goal for future research. Rational manipulation of PTM events is expected to make an important contribution to the implementation of effective biotechnological strategies for engineering grain crops for increased yields via metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abadie C, Mainguet S, Davanture M, Hodges M, Zivy M, Tcherkez G (2016) Concerted changes in the phosphoproteome and metabolome under different CO2/O2 gaseous conditions in Arabidopsis rosettes. Plant Cell Phys 57:1544–1556

    CAS  Google Scholar 

  • Agetsuma M, Furumoto T, Yanagisawa S, Izui K (2005) The ubiquitin-proteasome pathway is involved in rapid degradation of phosphoenolpyruvate carboxylase kinase for C4 photosynthesis. Plant Cell Physiol 46:389–398

    Article  CAS  PubMed  Google Scholar 

  • Anguenot R, Yelle S, Nguyen-Quoc B (1999) Purification of tomato sucrose synthase phosphorylated isoforms by Fe(III)-immobilized metal affinity chromatography. Arch Biochem Biophys 365:163–169

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, …, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14: 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N et al (2004) Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101:2642–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  PubMed  Google Scholar 

  • Bieniawska Z, Paul Barratt DH, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828

    Article  CAS  PubMed  Google Scholar 

  • Blonde JD, Plaxton WC (2003) Structural and kinetic properties of high and low molecular mass phosphoenolpyruvate carboxylase isoforms from the endosperm developing castor oilseeds. J Biol Chem 278:11867–11873

    Article  CAS  PubMed  Google Scholar 

  • Boex-Fontvieille E, Davanture M, Jossier M, Zivy M, Hodges M, Tcherkez G (2014) Photosynthetic activity influences cellulose biosynthesis and phosphorylation of proteins involved therein in Arabidopsis leaves. J Exp Bot 65:4497–5010

    Article  CAS  Google Scholar 

  • Brill E, van Thournout M, White RG, Llewellyn D, Campbell PM, Engelen S, …, Furbank RT (2011) A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiol 157: 40–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev. Plant Biol 56:187–220

    Article  CAS  Google Scholar 

  • Bunney TD, van Walraven HS, de Boer AH (2001) 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc Natl Acad Sci USA 98:4249–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustos DM, Iglesias AA (2002) Non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase is post-translationally phosphorylated in heterotrophic cells of wheat (Triticum aestivum). FEBS Letts 530:169–173

    Article  CAS  Google Scholar 

  • Bustos DM, Iglesias AA (2003) Phosphorylated non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from heterotrophic cells of wheat interacts with 14-3-3 proteins. Plant Physiol 133:2081–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung CY, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ (2014) A diel flux balance model captures interactions between light and dark metabolism during day-night cycles in C3 and crassulacean acid metabolism leaves. Plant Physiol 165:917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chollet R, Vidal J, O’Leary MH (1996) Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants. Annu Rev. Plant Physiol Plant Mol Biol 47:273–298

    Article  CAS  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  CAS  PubMed  Google Scholar 

  • Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106:13118–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comparot S, Lingiah G, Martin T (2003) Function and specificity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism. J Exp Bot 54:595–604

    Article  CAS  PubMed  Google Scholar 

  • Daloso DM, Muller K, Obata T, Florian A, Tohge T, Bottcher A et al (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc Natl Acad Sci USA 112:E1392–E1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalziel KJ, O’Leary B, Brikis C, Rao SK, She YM, Cyr T, Plaxton WC (2012) The bacterial-type phosphoenolpyruvate carboxylase isozyme from developing castor oil seeds is subject to in vivo regulatory phosphorylation at serine-451. FEBS Lett 586:1049–1054

    Article  CAS  PubMed  Google Scholar 

  • Duncan KA, Huber SC (2007) Sucrose synthase oligomerization and F-actin association are regulated by sucrose concentration and phosphorylation. Plant Cell Physiol 48:1612–1623

    Article  CAS  PubMed  Google Scholar 

  • Fedosejevs ET, Ying S, Park J, Anderson EM, Mullen RT, She YM, Plaxton WC (2014) Biochemical and molecular characterization of RcSUS1, a cytosolic sucrose synthase phosphorylated in vivo at serine 11 in developing castor oil seeds. J Biol Chem 289:33412–33424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedosejevs ET, Gerdis SA, Ying S, Pyc M, Anderson EM, Snedden WA et al (2016) The calcium-dependent protein kinase RcCDPK2 phosphorylates sucrose synthase at Ser11 in developing castor oil seeds. Biochem J 473:3667–3682

    Article  CAS  PubMed  Google Scholar 

  • Figueroa CM, Lunn JE (2016) A tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiol 172:7–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa CM, Feil R, Ishihara H, Watanabe M, Kolling K, Krause U, …, Lunn JE (2016) Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability. Plant J 85: 410–423.

    Article  CAS  PubMed  Google Scholar 

  • Finkemeier I, Laxa M, Miguet L, Howden AJ, Sweetlove LJ (2011) Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol 155:1779–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friso G, van Wijk KJ (2015) Posttranslational protein modifications in plant metabolism. Plant Physiol 169:1469–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukayama H, Tamai T, Taniguchi Y, Sullivan S, Miyao M, Nimmo HG (2006) Characterization and functional analysis of phosphoenolpyruvate carboxylase kinase genes in rice. Plant J 47:258–268

    Article  CAS  PubMed  Google Scholar 

  • Furumoto T, Teramoto M, Inada N, Ito M, Nishida I, Watanabe A (2001) Phosphorylation of a bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase, is regulated physiologically and developmentally in rosette leaves of Arabidopsis thaliana. Plant Cell Physiol 42:1044–1048

    Article  CAS  PubMed  Google Scholar 

  • Gelhaye E, Rouhier N, Gerard J, Jolivet Y, Gualberto J, Navrot N et al (2004) A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci USA 101:14545–14550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gennidakis S, Rao S, Greenham K, Uhrig RG, O’Leary B, Snedden WA, Lu C, Plaxton WC (2007) Bacterial- and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the hetero-oligomeric Class-2 PEPC complex of developing castor oil seeds. Plant J 52:839–849

    Article  CAS  PubMed  Google Scholar 

  • Gregory AL, Hurley BA, Tran HT, Valentine AJ, She Y-M, Knowles VL, Plaxton WC (2009) In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana. Biochem J 420:57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardin SC, Winter H, Huber SC (2004) Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity. Plant Physiol 134:1427–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AT, Ying S, Plaxton WC (2014) Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase by a Ca2+-dependent protein kinase suggests a link between Ca2+ signalling and anaplerotic pathway control in developing castor oil seeds. Biochem J 458:109–118

    Article  CAS  PubMed  Google Scholar 

  • Huber SC, Hardin SC (2004) Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Curr Op Plant Biol 7:318–322

    Article  CAS  Google Scholar 

  • Huber SC, Huber JL, Liao PC, Gage DA, RW MM Jr, Chourey PS, Hannah LC, Koch K (1996) Phosphorylation of serine-15 of maize leaf sucrose synthase. Occurrence in vivo and possible regulatory significance. Plant Physiol 112:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igawa T, Fujiwara M, Tanaka I, Fukao Y, Yanagawa Y (2010) Characterization of bacterial-type phosphoenolpyruvate carboxylase expressed in male gametophyte of higher plants. BMC Plant Biol 10:200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Izui K, Matsumura H, Furumoto T, Kai Y (2004) Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev. Plant Biol 55:69–84

    Article  CAS  Google Scholar 

  • Komina O, Zhou Y, Sarath G, Chollet R (2002) In vivo and in vitro phosphorylation of membrane and soluble forms of soybean nodule sucrose synthase. Plant Physiol 129:1664–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konig AC, Hartl M, Boersema PJ, Mann M, Finkemeier I (2014) The mitochondrial lysine acetylome of Arabidopsis. Mitochondrion 19:252–260

    Article  PubMed  CAS  Google Scholar 

  • Kulma A, Villadsen D, Campbell DG, Meek SEM, Harthill JE, Nielsen TH, MacKintosh C (2004) Phosphorylation and 14-3-3 binding of Arabidopsis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Plant J 37:654–667

    Article  CAS  PubMed  Google Scholar 

  • Lamotte O, Bertoldo JB, Besson-Bard A, Rosnoblet C, Aime S, HIchami S, Terenzi H, Wendehenne D (2015) Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem 2:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Law RD, Plaxton WC (1997) Regulatory phosphorylation of banana fruit phosphoenolpyruvate carboxylase by a copurifying phosphoenolpyruvate carboxylase-kinase. Eur J Biochem 247:642–651

    Article  CAS  PubMed  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mair A, Pedrotti L, Wurzinger B, Anrather D, Simeunovic A, Weiste C, …, Teige M (2015) SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. eLife 4: e05828.

    PubMed Central  Google Scholar 

  • Marillia EF, Micallef BJ, Micallef M, Weninger A, Pedersen KK, Zou J, Taylor DC (2003) Biochemical and physiological studies of Arabidopsis thaliana transgenic lines with repressed expression of the mitochondrial pyruvate dehydrogenase kinase. J Exp Bot 54:259–270

    Article  CAS  PubMed  Google Scholar 

  • Moorhead GBG, Templeton GW, Tran HT (2006) Role of protein kinases, phosphatases and 14-3-3 proteins in the control of primary plant metabolism. In: Plaxton WC, McManus MT (eds) Annual plant reviews: control of primary metabolism in plants, vol 22. Blackwell Publishing Ltd, Oxford, pp 121–149

    Google Scholar 

  • Murmu J, Plaxton WC (2007) Phosphoenolpyruvate carboxylase protein kinase from developing castor oil seeds: partial purification, characterization, and reversible control by photosynthate supply. Planta 226:1299–1310

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Konishi T, Zhang XQ, Chollet R, Tonouchi N, Tsuchida T et al (1998) An increase in apparent affinity for sucrose of mung bean sucrose synthase is caused by in vitro phosphorylation or directed mutagenesis of Ser11. Plant Cell Physiol 39:1337–1341

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TH, Rung JH, Villadsen D (2004) Fructose-2,6-bisphosphate: a traffic signal in plant metabolism. Trends in. Plant Sci 9:556–563

    Article  CAS  Google Scholar 

  • Nietzel T, Mostertz J, Hochgrafe F, Schwarzlander M (2016) Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion. https://doi.org/10.1016/j.mito.2016.07.010

  • Nimmo HG (2003) Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants. Arch Biochem Biophys 414:189–196

    Article  CAS  PubMed  Google Scholar 

  • O’Hara LE, Paul MJ, Wingler A (2013) How do sugars regulate plant growth and development? New insights into the role of trehalose-6-phosphate. Mol Plant 6:261–274

    Article  PubMed  CAS  Google Scholar 

  • O’Leary B, Plaxton WC (2015) The central role of glutamate and aspartate in the post-translational control of respiration and nitrogen assimilation in plant cells. In: D’Mello JPF (ed) Amino acids in higher plants. CABI International, Boston, pp 277–293

    Google Scholar 

  • O’Leary B, Rao SK, Kim J, Plaxton WC (2009) Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants. J Biol Chem 284:24797–24805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Leary B, Fedosejevs ET, Hill AT, Bettridge J, Park J, Rao SK, Leach CA, Plaxton WC (2011a) Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L. J Exp Bot 62:5485–5495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Leary B, Park J, Plaxton WC (2011b) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436:15–34

    Article  PubMed  CAS  Google Scholar 

  • O’Leary B, Rao SK, Plaxton WC (2011c) Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser425 provides a further tier of enzyme control in developing castor oil seeds. Biochem J 433:65–74

    Article  PubMed  CAS  Google Scholar 

  • Oliver SN, Lunn JE, Urbanczyk-Wochniak E, Lytovchenko A, van Dongen JT, Faix B et al (2008) Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase. Plant Physiol 148:1640–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Khuu N, Howard AS, Mullen RT, Plaxton WC (2012) Bacterial- and plant-type phosphoenolpyruvate carboxylase isozymes from developing castor oil seeds interact in vivo and associate with the surface of mitochondria. Plant J 71:251–262

    Article  CAS  PubMed  Google Scholar 

  • Peralta DA, Araya A, Busi MV, Gomez-Casati DF (2016) The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana. Int J Biochem Cell Biol 70:48–56

    Article  CAS  PubMed  Google Scholar 

  • Piattoni CV, Bustos DM, Guerrero SA, Iglesias AA (2011) Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase is phosphorylated in wheat endosperm at Serine-404 by an SNF1-related protein kinase allosterically inhibited by ribose-5-phosphate. Plant Physiol 156:1337–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaxton WC, O’Leary B (2012) The central role of phosphoenolpyruvate metabolism in developing oilseeds. In: Agrawal GK, Rakwal R (eds) Seed development, OMICS technologies toward improvement of seed quality and crop yield. Springer, Dordrecht, pp 279–301

    Chapter  Google Scholar 

  • Plaxton WC, Podestá FE (2006) The functional organization and control of plant respiration. Crit Rev Plant Sci 25:159–198

    Article  CAS  Google Scholar 

  • Plaxton WC, Shane MW (2015) The essential role of post-translational enzyme modifications in the metabolic adaptations of phosphorus-deprived plants. In: Plaxton WC, Lambers H (eds) Annual plant reviews, phosphorus metabolism in plants, vol 48. Wiley-Blackwell, Oxford, pp 99–123

    Chapter  Google Scholar 

  • Radchuk R, Radchuk V, Goetz K-P, Weichert H, Richter A, Emery RJN, Weschke W, Weber H (2007) Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks. Plant J 51:819–839

    Article  CAS  PubMed  Google Scholar 

  • Rademacher T, Hausler RE, Hirsch HJ, Zhang L, Lipka V, Weier D, Kreuzaler F, Peterhansel C (2002) An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. Plant J 32:25–39

    Article  CAS  PubMed  Google Scholar 

  • Rao RSP, Thelen JJ, Miernyk JA (2014) Is Lys-Nvarepsilon-acetylation the next big thing in PTMs? Trends Plant Sci 19:550–553

    Article  CAS  PubMed  Google Scholar 

  • Rao RSP, Salvato F, Thal B, Eubel H, Thelen JJ, Moller IM (2017) The proteome of higher plant mitochondria. Mitochondrion 33:22–37

    Google Scholar 

  • Rivoal J, Trzos S, Gage DA, Plaxton WC, Turpin DH (2001) Two unrelated phosphoenolpyruvate carboxylase polypeptides physically interact in the high molecular mass isoforms of this enzyme in the unicellular green alga Selenastrum minutum. J Biol Chem 276:12588–12597

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ballesta I, Feria AB, Ni H, She YM, Plaxton WC, Echevarría C (2014) In vivo monoubiquitination of anaplerotic phosphoenolpyruvate carboxylase occurs at Lys624 in germinating sorghum seeds. J Exp Bot 65:443–451

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ballesta I, Baena G, Gandullo J, Wang L, She Y-M, Plaxton WC, Echevarría C (2016) New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination. J Exp Bot 67:3523–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saze H, Ueno Y, Hisabori T, Hayashi H, Izui K (2001) Thioredoxin mediated reductive activation of a protein kinase for the regulatory phosphorylation of C4-form phosphoenolpyruvate carboxylase from maize. Plant Cell Physiol 42:1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Schmidtmann E, Konig AC, Orwat A, Leister D, Hartl M, Finkemeier I (2014) Redox regulation of Arabidopsis mitochondrial citrate synthase. Mol Plant 7:156–169

    Article  CAS  PubMed  Google Scholar 

  • Schwender J, Shachar-Hill Y, Ohlrogge JB (2006) Mitochondrial metabolism in developing embryos of Brassica napus. J Biol Chem 281:34040–34047

    Article  CAS  PubMed  Google Scholar 

  • Schwender J, König C, Klapperstück M, Heinzel N, Munz E, Hebbelmann I et al (2014) Transcript abundance on its own cannot be used to infer fluxes in central metabolism. Frontiers Plant Sci 5:668

    Article  Google Scholar 

  • Schwender J, Hebbelmann I, Heinzel N, Hildebrandt T, Rogers A, Naik D et al (2015) Quantitative multilevel analysis of central metabolism in developing oilseeds of oilseed rape during in vitro culture. Plant Physiol 168:828–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shane MW, Fedosejevs ET, Plaxton WC (2013) Reciprocal control of anaplerotic phosphoenolpyruvate carboxylase by in vivo monoubiquitination and phosphorylation in developing proteoid roots of phosphate-deficient harsh hakea. Plant Physiol 161:1634–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stitt M, Gibon Y (2014) Why measure enzyme activities in the era of systems biology? Trends Plant Sci 19:256–265

    Article  CAS  PubMed  Google Scholar 

  • Subbaiah CC, Sachs MM (2001) Altered patterns of sucrose synthase phosphorylation and localization precede callose induction and root tip death in anoxic maize seedlings. Plant Physiol 125:585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan S, Jenkins GI, Nimmo HG (2004) Roots, cycles and leaves. Expression of the phosphoenolpyruvate carboxylase kinase gene family in soybean. Plant Physiol 135:2078–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweetlove LJ, Fell D, Fernie AR (2008) Getting to grips with the plant metabolic network. Biochem J 409:27–41

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Beard KF, Nunes-Nesi A, Fernie AR, Ratcliffe RG (2010) Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–470

    Article  CAS  PubMed  Google Scholar 

  • Tanase K, Shiratake K, Mori H, Yamaki S (2002) Changes in the phosphorylation state of sucrose synthase during development of Japanese pear fruit. Physiol Plant 114:21–26

    Article  CAS  PubMed  Google Scholar 

  • Tang GQ, Hardin SC, Dewey R, Huber SC (2003) A novel C-terminal proteolytic processing of cytosolic pyruvate kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds. Plant J 34:77–93

    Article  CAS  PubMed  Google Scholar 

  • Tcherkez G, Boex-Fontvieille E, Mahé A, Hodges M (2012) Respiratory carbon fluxes in leaves. Curr Opin Plant Biol 15:308–314

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Mendez A, Miernyk JA, Randall DD (2003) Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem 270:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Tran H, Uhrig RG, Nimick M, Moorhead GB (2012) Interfacing protein lysine acetylation and protein phosphorylation: ancient modifications meet on ancient proteins. Plant Signal Behav 7:901–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripodi KE, Turner WL, Gennidakis S, Plaxton WC (2005) In vivo regulatory phosphorylation of novel phosphoenolpyruvate carboxylase isoforms in endosperm of developing castor oil seeds. Plant Physiol 139:969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhrig RG, She Y-M, Leach CA, Plaxton WC (2008a) Regulatory monoubiquitination of phosphoenolpyruvate carboxylase in germinating castor oil seeds. J Biol Chem 283:29650–29657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhrig RG, O’Leary B, Spang HE, MacDonald JA, She Y-M, Plaxton WC (2008b) Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds. Plant Physiol 146:1346–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umbach AL, Ng VS, Siedow JN (2006) Regulation of plant alternative oxidase activity: a tale of two cysteines. Biochim Biophys Acta 1757:135–142

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner GR, Payne RM (2013) Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 288:29036–29045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L et al (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinert BT, Iesmantavicius V, Moustafa T, Scholz C, Wagner SA, Magnes C, Zechner R, Choudhary C (2014) Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol Syst Biol 10:716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson RS, Swatek KN, Thelen JJ (2016) Regulation of the regulators: PTMs, subcellular, and spatiotemporal distribution of plant 14-3-3 proteins. Front Plant Sci 7:611

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol 35:253–289

    Article  CAS  PubMed  Google Scholar 

  • Winter H, Huber JL, Huber SC (1997) Membrane association of sucrose synthase: changes during the graviresponse and possible control by protein phosphorylation. FEBS Lett 420:151–155

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Oh MH, Schwarz EM, Larue CT, Sivaguru M, Imai BS et al (2011) Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis. Plant Physiol 155:1769–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu WX, Zhou Y, Chollet R (2003) Identification and expression of a soybean nodule-enhanced PEP-carboxylase kinase gene (NE-PpcK) that shows striking up-/down-regulation in vivo. Plant J 34:441–452

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Sato SJ, Clemente TE, Chollet R (2007) The PEP-carboxylase kinase gene family in Glycine max (GmPpcK1-4): an in-depth molecular analysis with nodulated, non-transgenic and transgenic plants. Plant J 49:910–923

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Ge H, Wu S, Zhang N, Chen W, Xu C, …, Xu D (2014) P3DB 3.0: From plant phosphorylation sites to protein networks. Nucleic Acids Res 42(Database issue):D1206--D1213

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Hisabori T (2014) Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis. Front Environ Sci 2:39

    Article  Google Scholar 

  • Yoshida K, Noguchi K, Motohashi K, Hisabori T (2013) Systematic exploration of thioredoxin target proteins in plant mitochondria. Plant Cell Physiol 54:875–892

    Article  CAS  PubMed  Google Scholar 

  • Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier N, Lemaire SD, Trost P (2013) Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. J Biol Chem 288:22777–22789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XQ, Lund AA, Sarath G, Cerny RL, Roberts DM, Chollet R (1999) Soybean nodule sucrose synthase (nodulin-100): further analysis of its phosphorylation using recombinant and authentic root-nodule enzymes. Arch Biochem Biophys 371:70–82

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

WCP is indebted to past and present members of his laboratory, as well as various collaborators who have examined the occurrence, functions, and mechanisms of enzyme PTMs in the control of plant metabolism. WCP is also indebted to the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Queen’s Research Chairs program who have provided generous financial support for this research. Brendan O’Leary acknowledges research funding from an Australian Research Council Discovery Early Career Award Fellowship (DE150100130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan M. O’Leary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Leary, B.M., Plaxton, W.C. (2017). Mechanisms and Functions of Post-translational Enzyme Modifications in the Organization and Control of Plant Respiratory Metabolism. In: Tcherkez, G., Ghashghaie, J. (eds) Plant Respiration: Metabolic Fluxes and Carbon Balance. Advances in Photosynthesis and Respiration, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-68703-2_13

Download citation

Publish with us

Policies and ethics