Skip to main content

Nested Timed Automata with Diagonal Constraints

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10610))

Included in the following conference series:

  • 977 Accesses

Abstract

Time constraints are usually used in timed systems to rule on discrete behaviours based on the valuations of clocks. They are categorized into diagonal-free constraints and diagonal constraints. In timed automata, it is well-known that diagonal constraints are just a useful syntax sugar since each diagonal constraint can be encoded into diagonal-free constraints. However, it is yet unknown when recursion is taken into consideration. This paper investigates the decidability results of these systems with diagonal constraints, under the model of nested timed automata (NeTAs). We show that the NeTAs containing a singleton global clock with diagonal constraints are Turing complete, even when the clock assignment is restricted to the clock reset. In comparison, the reachability problem for a subclass, NeTAs without frozen clocks, is decidable under diagonal constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mattai, J.: Real-Time Systems: Specification, Verification, and Analysis. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111, 193–244 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27755-2_3

    Chapter  Google Scholar 

  5. Clemente, L., Lasota, S.: Timed pushdown automata, revisited. In: Proceedings of LICS 2015, pp. 738–749

    Google Scholar 

  6. Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40229-6_12

    Chapter  Google Scholar 

  7. Li, G., Ogawa, M., Yuen, S.: Nested timed automata with frozen clocks. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 189–205. Springer, Cham (2015). doi:10.1007/978-3-319-22975-1_13

    Chapter  Google Scholar 

  8. Fang, B., Li, G., Sun, D., Cai, H.: Schedulability analysis of timed regular tasks by under-approximation on WCET. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 147–162. Springer, Cham (2016). doi:10.1007/978-3-319-47677-3_10

    Chapter  Google Scholar 

  9. Berard, B., Haddad, S., Sassolas, M.: Real time properties for interrupt timed automata. In: Proceedings of TIME 2010, pp. 69–76. IEEE Computer Society (2010)

    Google Scholar 

  10. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15643-4_23

    Chapter  Google Scholar 

  11. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  12. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: closing a decidability gap. In: Proceedings of LICS 2004, pp. 54–63. IEEE Computer Society (2004)

    Google Scholar 

  13. Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 298–312. Springer, Heidelberg (1998). doi:10.1007/BFb0054179

    Chapter  Google Scholar 

  14. Abdulla, P., Jonsson, B.: Model checking of systems with many identical time processes. Theoret. Comput. Sci. 290, 241–264 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cai, X., Ogawa, M.: Well-structured pushdown system: case of dense timed pushdown automata. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 336–352. Springer, Cham (2014). doi:10.1007/978-3-319-07151-0_21

    Chapter  Google Scholar 

  16. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Proceedings of LICS 2012, pp. 35–44. IEEE Computer Society (2012)

    Google Scholar 

  17. Abdulla, P.A., Atig, M.F., Stenman, J.: The minimal cost reachability problem in priced timed pushdown systems. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 58–69. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28332-1_6

    Chapter  Google Scholar 

  18. Alur, R., Etessami, K., Yannakakis, M.: Analysis of recursive state machines. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 207–220. Springer, Heidelberg (2001). doi:10.1007/3-540-44585-4_18

    Chapter  Google Scholar 

  19. Benerecetti, M., Minopoli, S., Peron, A.: Analysis of timed recursive state machines, pp. 61–68. In: Proceedings of the TIME 2010. IEEE Computer Society (2010)

    Google Scholar 

  20. Wang, Y., Li, G., Yuen, S.: Nested timed automata with various clocks. Sci. Found. Chin. 24, 51–68 (2016)

    Google Scholar 

  21. Tian, C., Duan, Z.: Detecting spurious counterexamples efficiently in abstract model checking. In: Proceedings of the ICSE 2013, pp. 202–211. IEEE/ACM (2013)

    Google Scholar 

  22. Tian, C., Duan, Z., Duan, Z.: Making CEGAR more efficient in software model checking. IEEE Trans. Softw. Eng. 40, 1206–1223 (2014)

    Article  Google Scholar 

  23. Liu, Y., Duan, Z., Tian, C.: A decision procedure for a fragment of linear time Mu-calculus. In: Proceedings of the IJCAI 2016, pp. 1195–1201. IJCAI/AAAI Press (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China with grant No. 61472240, 61672340, 61472238, and the NSFC-JSPS bilateral joint research project with grant No. 61511140100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, Y., Wen, Y., Li, G., Yuen, S. (2017). Nested Timed Automata with Diagonal Constraints. In: Duan, Z., Ong, L. (eds) Formal Methods and Software Engineering. ICFEM 2017. Lecture Notes in Computer Science(), vol 10610. Springer, Cham. https://doi.org/10.1007/978-3-319-68690-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68690-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68689-9

  • Online ISBN: 978-3-319-68690-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics