Formal Analysis of Linear Control Systems Using Theorem Proving

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10610)


Control systems are an integral part of almost every engineering and physical system and thus their accurate analysis is of utmost importance. Traditionally, control systems are analyzed using paper-and-pencil proof and computer simulation methods, however, both of these methods cannot provide accurate analysis due to their inherent limitations. Model checking has been widely used to analyze control systems but the continuous nature of their environment and physical components cannot be truly captured by a state-transition system in this technique. To overcome these limitations, we propose to use higher-order-logic theorem proving for analyzing linear control systems based on a formalized theory of the Laplace transform method. For this purpose, we have formalized the foundations of linear control system analysis in higher-order logic so that a linear control system can be readily modeled and analyzed. The paper presents a new formalization of the Laplace transform and the formal verification of its properties that are frequently used in the transfer function based analysis to judge the frequency response, gain margin and phase margin, and stability of a linear control system. We also formalize the active realizations of various controllers, like Proportional-Integral-Derivative (PID), Proportional-Integral (PI), Proportional-Derivative (PD), and various active and passive compensators, like lead, lag and lag-lead. For illustration, we present a formal analysis of an unmanned free-swimming submersible vehicle using the HOL Light theorem prover.


Control systems Higher-order logic Theorem proving 



This work was supported by the National Research Program for Universities grant (number 1543) of Higher Education Commission (HEC), Pakistan.


  1. 1.
    Ahmad, M., Hasan, O.: Formal verification of steady-state errors in unity-feedback control systems. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 1–15. Springer, Cham (2014). doi: 10.1007/978-3-319-10702-8_1 Google Scholar
  2. 2.
    Aréchiga, N., Loos, S.M., Platzer, A., Krogh, B.H.: Using theorem provers to guarantee closed-loop system properties. In: American Control Conference (ACC), 2012, pp. 3573–3580. IEEE (2012)Google Scholar
  3. 3.
    Babuska, R., Stramigioli, S.: Matlab and Simulink for Modeling and Control. Delft University of Technology (1999)Google Scholar
  4. 4.
    Beerends, R.J., Morsche, H.G., Van den Berg, J.C., Van de Vrie, E.M.: Fourier and Laplace Transforms. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Beillahi, S.M., Siddique, U., Tahar, S.: Formal analysis of power electronic systems. In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 270–286. Springer, Cham (2015). doi: 10.1007/978-3-319-25423-4_17 CrossRefGoogle Scholar
  6. 6.
    Boulton, R.J., Hardy, R., Martin, U.: A hoare logic for single-input single-output continuous-time control systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 113–125. Springer, Heidelberg (2003). doi: 10.1007/3-540-36580-X_11 CrossRefGoogle Scholar
  7. 7.
    Ghosh, S.: Control Systems, vol. 1000. Pearson Education, New Delhi (2010)Google Scholar
  8. 8.
    Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). doi: 10.1007/BFb0031814 CrossRefGoogle Scholar
  9. 9.
    Harrison, J.: The HOL light theory of euclidean space. J. Autom. Reason. 50(2), 173–190 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hasan, O., Ahmad, M.: Formal analysis of steady state errors in feedback control systems using HOL-light. In: Design, Automation and Test in Europe, pp. 1423–1426 (2013)Google Scholar
  11. 11.
    Hasan, O., Tahar, S.: Formal verification methods. In: Khosrow-Pour, M. (ed.) Encyclopedia of Information Science and Technology, pp. 7162–7170. IGI Global Pub, Hershey (2015)CrossRefGoogle Scholar
  12. 12.
    Johnson, M.E.: Model checking safety properties of servo-loop control systems. In: Dependable Systems and Networks, pp. 45–50. IEEE (2002)Google Scholar
  13. 13.
    Kondo, H., Ura, T.: Navigation of an AUV for investigation of underwater structures. Control Eng. Pract. 12(12), 1551–1559 (2004)CrossRefGoogle Scholar
  14. 14.
    Lutovac, M., Tošić, D.: Symbolic analysis and design of control systems using mathematica. Int. J. Control 79(11), 1368–1381 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nise, N.S.: Control Systems Engineering. Wiley, New York (2007)zbMATHGoogle Scholar
  16. 16.
    Ogata, K., Yang, Y.: Modern Control Engineering. Prentice-Hall, Englewood Cliffs (1970)Google Scholar
  17. 17.
    Rashid, A.: Formal Analysis of Linear Control Systems using Theorem Proving (2017).
  18. 18.
    Rashid, A., Hasan, O.: On the formalization of fourier transform in higher-order logic. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 483–490. Springer, Cham (2016). doi: 10.1007/978-3-319-43144-4_31 CrossRefGoogle Scholar
  19. 19.
    Rashid, A., Hasan, O.: Formalization of transform methods using HOL light. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS(LNAI), vol. 10383, pp. 319–332. Springer, Cham (2017)CrossRefGoogle Scholar
  20. 20.
    Taqdees, S.H., Hasan, O.: Formalization of laplace transform using the multivariable calculus theory of HOL-light. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 744–758. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45221-5_50 CrossRefGoogle Scholar
  21. 21.
    Taqdees, S.H., Hasan, O.: Formally verifying transfer functions of linear analog circuits. IEEE Des. Test 5(99), 1–7 (2017)Google Scholar
  22. 22.
    Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002). doi: 10.1007/3-540-45873-5_36 CrossRefGoogle Scholar
  23. 23.
    Wernli, R.L.: Low cost UUV’s for military applications: is the technology ready? In: Pacific Congress on Marine Science and Technology (2001)Google Scholar
  24. 24.
    Willcox, S., Vaganay, J., Grieve, R., Rish, J.: The Bluefin BPAUV: An Organic Widearea Bottom Mapping and Mine-hunting Vehicle. Unmanned Untethered Submersible Technology (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations