Skip to main content

A Model for Optimal Reinforcement of Error- and Attack-Resilient Clusters in Networks Under Uncertainty

  • Chapter
  • First Online:
Optimization Methods and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 130))

Abstract

Network robustness issues are crucial in a variety of application areas, such as energy, defense, communications, and so on. Unpredictable failures of network components (nodes and/or edges) can be caused by a variety of factors, including man-made and natural disruptions, which may significantly affect or inhibit network’s functionality. In many situations, one of the key robustness requirements is that every pair of nodes is connected, with the number of intermediate links between them being as small as possible. Additionally, if nodes in a cluster are connected by several different paths, such a cluster will be more robust with respect to potential network component disruptions. In this work, we study the problem of identifying error- and attack-resilient clusters in graphs, particularly power grids. It is assumed that the cluster represents a R-robust 2-club, which is defined as a subgraph with at least R node/edge disjoint paths connecting each pair of nodes, where each path consists of at most two edges. Uncertain information manifests itself in the form of stochastic number of errors/attacks that could happen in different nodes. If one can reinforce the network components against future threats, the goal is to determine optimal reinforcements that would yield a cluster with minimum risk of disruptions. A combinatorial branch-and-bound algorithm is developed and compared with an equivalent mathematical programming approach on simulated and real-world networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Center for Discrete Mathematics and Theoretical Computer Science

  2. 2.

    See http://www.ee.washington.edu/research/pstca/fortheIEEEdatasets.

References

  1. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Google Scholar 

  2. Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The maximum weight connected subgraph problem. In: Facets of Combinatorial Optimization, pp. 245–270. Springer, Heidelberg (2013)

    Google Scholar 

  3. Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., et al.: Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance. IEEE Trans. Power Syst. 20(4), 1922–1928 (2005)

    Google Scholar 

  4. Aneja, Y.P., Chandrasekaran, R., Nair, K.: Maximizing residual flow under an arc destruction. Networks 38(4), 194–198 (2001)

    Google Scholar 

  5. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)

    Google Scholar 

  6. Atamtürk, A., Zhang, M.: Two-stage robust network flow and design under demand uncertainty. Oper. Res. 55(4), 662–673 (2007)

    Google Scholar 

  7. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: Graph Partitioning and Graph Clustering. 10th DIMACS Implementation Challenge Workshop. Contemporary Mathematics, vol. 588. American Mathematical Society, Providence (2013)

    Google Scholar 

  8. Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique problem. Networks 19(2), 247–253 (1989)

    Google Scholar 

  9. Balasubramaniam, C., Butenko, S.: On robust clusters of minimum cardinality in networks. Ann. Oper. Res. 249(1–2), 17–37 (2017)

    Google Scholar 

  10. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: the maximum k-plex problem. Oper. Res. 59(1), 133–142 (2011)

    Google Scholar 

  11. Balasundaram, B., Pajouh, F.M.: Graph theoretic clique relaxations and applications. In: Handbook of Combinatorial Optimization, pp. 1559–1598. Springer, Heidelberg (2013)

    Google Scholar 

  12. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.M.: Improvements to MCS algorithm for the maximum clique problem. J. Comb. Optim. 27(2), 397–416 (2014)

    Google Scholar 

  13. Bell, D.E.: Regret in decision making under uncertainty. Oper. Res. 30(5), 961–981 (1982)

    Google Scholar 

  14. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Handbook of Combinatorial Optimization, pp. 1–74. Springer, Berlin (1999)

    Google Scholar 

  15. Carraghan, R., Pardalos, P.M.: An exact algorithm for the maximum clique problem. Oper. Res. Lett. 9(6), 375–382 (1990)

    Google Scholar 

  16. Chang, M.S., Hung, L.J., Lin, C.R., Su, P.C.: Finding large k-clubs in undirected graphs. Computing 95(9), 739–758 (2013)

    Google Scholar 

  17. Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Error and attack tolerance of complex networks. Physica A 340(1), 388–394 (2004)

    Google Scholar 

  18. Delbaen, F.: Coherent risk measures on general probability spaces. In: Advances in Finance and Stochastics, pp. 1–37. Springer, Berlin (2002)

    Google Scholar 

  19. Erdös, P., Rényi, A.: On random graphs, I. Publ. Math. (Debrecen) 6, 290–297 (1959)

    Google Scholar 

  20. Fourer, R., Gay, D.M., Kernighan, B.: AMPL: A Modeling Language for Mathematical Programming, vol. 117. Boyd & Fraser, Danvers, MA (1993)

    MATH  Google Scholar 

  21. Gavril, F.: Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3(3), 261–273 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glockner, G.D., Nemhauser, G.L.: A dynamic network flow problem with uncertain arc capacities: formulation and problem structure. Oper. Res. 48(2), 233–242 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Halverson, J.B., Rabenhorst, T.: Hurricane sandy: the science and impacts of a superstorm. Weatherwise 66(2), 14–23 (2013)

    Article  Google Scholar 

  24. Johnson, D.S., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, October 11–13, 1993, vol. 26. American Mathematical Society, Providence (1996)

    Book  MATH  Google Scholar 

  25. Konc, J., Janezic, D.: An improved branch and bound algorithm for the maximum clique problem. MATCH Commun. Math. Comput. Chem. 58, 569–590 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Kraus, A., Litzenberger, R.H.: Skewness preference and the valuation of risk assets. J. Financ. 31(4), 1085–1100 (1976)

    Google Scholar 

  27. Krokhmal, P.A.: Higher moment coherent risk measures. Quant. Finan. 7(4), 373–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Krokhmal, P., Palmquist, J., Uryasev, S.: Portfolio optimization with conditional value-at-risk objective and constraints. J. Risk 4, 43–68 (2002)

    Article  Google Scholar 

  29. Krokhmal, P., Zabarankin, M., Uryasev, S.: Modeling and optimization of risk. Surv. Oper. Res. Manag. Sci. 16(2), 49–66 (2011)

    Google Scholar 

  30. Lambert, D.K., McCarl, B.A.: Risk modeling using direct solution of nonlinear approximations of the utility function. Am. J. Agric. Econ. 67(4), 846–852 (1985)

    Article  Google Scholar 

  31. Laporte, G., Louveaux, F., Mercure, H.: The vehicle routing problem with stochastic travel times. Transp. Sci. 26(3), 161–170 (1992)

    Article  MATH  Google Scholar 

  32. Ma, J., Pajouh, F.M., Balasundaram, B., Boginski, V.: The minimum spanning k-core problem with bounded CVaR under probabilistic edge failures. INFORMS J. Comput. 28(2), 295–307 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. MOSEK ApS: The MOSEK C optimizer API manual Version 7.1 (Revision 63). http://docs.mosek.com/7.1/capi/index.html (2017)

  34. Ort, D.U.: Algorithms and experiments for finding robust 2-clubs. Master’s Thesis, Technische Universität Berlin (2015)

    Google Scholar 

  35. Östergård, P.R.: A fast algorithm for the maximum clique problem. Discret. Appl. Math. 120(1), 197–207 (2002)

    Article  MathSciNet  Google Scholar 

  36. Pajouh, F.M., Moradi, E., Balasundaram, B.: Detecting large risk-averse 2-clubs in graphs with random edge failures. Ann. Oper. Res. 249(1–2), 55–73 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pardalos, P.M., Xue, J.: The maximum clique problem. J. Glob. Optim. 4(3), 301–328 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pastukhov, G., Veremyev, A., Boginski, V., Pasiliao, E.L.: Optimal design and augmentation of strongly attack-tolerant two-hop clusters in directed networks. J. Comb. Optim. 27(3), 462–486 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pattillo, J., Veremyev, A., Butenko, S., Boginski, V.: On the maximum quasi-clique problem. Discret. Appl. Math. 161(1), 244–257 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rabin, M.: Risk aversion and expected-utility theory: a calibration theorem. Econometrica 68(5), 1281–1292 (2000)

    Article  MathSciNet  Google Scholar 

  41. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)

    Article  Google Scholar 

  42. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Financ. 26(7), 1443–1471 (2002)

    Article  Google Scholar 

  43. Rysz, M., Mirghorbani, M., Krokhmal, P., Pasiliao, E.L.: On risk-averse maximum weighted subgraph problems. J. Comb. Optim. 28(1), 167–185 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rysz, M., Pajouh, F.M., Krokhmal, P., Pasiliao, E.L.: Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights. Ann. Oper. Res. 1–20 (2016)

    Google Scholar 

  45. Shephard, R.W., Färe, R.: The law of diminishing returns. Z. Nationalökonomie 34(1–2), 69–90 (1974)

    Article  MATH  Google Scholar 

  46. Spillman, W.J., Lang, E.: The Law of Diminishing Returns. World Book Company, New York (1924)

    Google Scholar 

  47. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique. In: Discrete Mathematics and Theoretical Computer Science, pp. 278–289. Springer, Berlin (2003)

    Google Scholar 

  48. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: International Workshop on Algorithms and Computation, pp. 191–203. Springer, Berlin (2010)

    Google Scholar 

  49. Vassell, G.S.: Northeast blackout of 1965. IEEE Power Eng. Rev. 11(1), 1–4 (1991)

    Article  Google Scholar 

  50. Veremyev, A., Boginski, V.: Identifying large robust network clusters via new compact formulations of maximum k-club problems. Eur. J. Oper. Res. 218(2), 316–326 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Veremyev, A., Boginski, V.: Robustness and strong attack tolerance of low-diameter networks. In: Dynamics of Information Systems: Mathematical Foundations, pp. 137–156. Springer, New York (2012)

    Google Scholar 

  52. Veremyev, A., Prokopyev, O.A., Boginski, V., Pasiliao, E.L.: Finding maximum subgraphs with relatively large vertex connectivity. Eur. J. Oper. Res. 239(2), 349–362 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, pp. 253–264. ACM, New York (1978)

    Google Scholar 

  54. Yezerska, O., Butenko, S., Boginski, V.L.: Detecting robust cliques in graphs subject to uncertain edge failures. Ann. Oper. Res. (2016). https://doi.org/10.1007/s10479-016-2161-0

  55. Zhang, Q., Sun, J., Tsang, E.: An evolutionary algorithm with guided mutation for the maximum clique problem. IEEE Trans. Evol. Comput. 9(2), 192–200 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the DTRA grant HDTRA1-14-1-0065 and the U.S. Department of Air Force grant FA8651-14-2-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo A. Krokhmal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dashti, H., Krokhmal, P.A. (2017). A Model for Optimal Reinforcement of Error- and Attack-Resilient Clusters in Networks Under Uncertainty. In: Butenko, S., Pardalos, P., Shylo, V. (eds) Optimization Methods and Applications . Springer Optimization and Its Applications, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-68640-0_6

Download citation

Publish with us

Policies and ethics