Skip to main content

Fuzzy Public-Key Encryption Based on Biometric Data

  • Conference paper
  • First Online:
Provable Security (ProvSec 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10592))

Included in the following conference series:

Abstract

Biometric data is an inherent representation of a human user, and it would be highly desirable to derive a private key of a public-key cryptographic scheme from a user’s biometric input such that the user does not need to remember any password or carry any device to store the private key and is able to enjoy all benefits of the public-key cryptographic scheme. In this paper, we introduce a notion called fuzzy public-key encryption (FPKE), which is a public-key encryption (PKE) scheme that accepts a piece of fuzzy data (i.e., a noisy version of the original biometric data) as the private key to decrypt the ciphertext. Compared to the traditional PKE scheme where a private key is usually stored in a device (e.g., a USB token), an FPKE scheme does not need to use any device for the storage of the private key. We first define a formal security model for FPKE, and then give generic constructions of FPKE based on the cryptographic primitives of linear sketch and PKE with some special properties.

B. Qin–State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For details on the limitations of helper strings, please refer to [9].

References

  1. Connaughton, R., Bowyer, K.W., Flynn, P.J.: Fusion of face and iris biometrics. In: Handbook of Iris Recognition, pp. 219–237. Springer, Heidelberg (2007)

    Google Scholar 

  2. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ellison, C., Schneier, B.: Ten risks of PKI: what you’re not being told about public key infrastructure. Comput. Secur. J. 16(1), 1–7 (2000)

    Google Scholar 

  4. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

    Article  MathSciNet  Google Scholar 

  5. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006). doi:10.1007/11681878_30

    Chapter  Google Scholar 

  6. MacKenzie, P., Reiter, M.K., Yang, K.: Alternatives to non-malleability: definitions, constructions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 171–190. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1_10

    Chapter  Google Scholar 

  7. Matsuda, T., Takahashi, K., Murakami, T., Hanaoka, G.: Fuzzy signatures: relaxing requirements and a new construction. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 97–116. Springer, Cham (2016). doi:10.1007/978-3-319-39555-5_6

    Google Scholar 

  8. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.1007/11426639_27

    Chapter  Google Scholar 

  9. Takahashi, K., Matsuda, T., Murakami, T., Hanaoka, G., Nishigaki, M.: A signature scheme with a fuzzy private key. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 105–126. Springer, Cham (2015). doi:10.1007/978-3-319-28166-7_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cui, H., Au, M.H., Qin, B., Deng, R.H., Yi, X. (2017). Fuzzy Public-Key Encryption Based on Biometric Data. In: Okamoto, T., Yu, Y., Au, M., Li, Y. (eds) Provable Security. ProvSec 2017. Lecture Notes in Computer Science(), vol 10592. Springer, Cham. https://doi.org/10.1007/978-3-319-68637-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68637-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68636-3

  • Online ISBN: 978-3-319-68637-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics