Skip to main content

Assessment of Reduction

  • Chapter
  • First Online:
Fracture Reduction and Fixation Techniques

Abstract

Using a direct reduction method, the fracture site is visualized greatly increasing the likelihood of an anatomic reduction in simple fracture patterns. In contrast, the fracture site is commonly not visualized during indirect reductions, and the surgeon relies on various methods to ensure restoration of accurate length, alignment, and rotation. The benefits of indirect reduction methods include decreased soft tissue dissection and less stripping of periosteal blood supply, with the goal of improving fracture healing and decreasing soft tissue wound complications. Because indirect reduction methods are being increasingly used, methods to assess fracture reduction have become vitally important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haller JM, O'Toole R, Graves M, Barei D, Gardner M, Kubiak E, Nascone J, Nork S, Presson AP, Higgins TF. How much articular displacement can be detected using fluoroscopy for tibial plateau fractures? Injury. 2015;46(11):2243–7.

    Article  PubMed  Google Scholar 

  2. Paley D, Tetsworth K. Mechanical axis deviation of the lower limbs: Preoperative planning of uniapical angular deformities of the tibia or femur. Clin Orthop. 1992;280:48–64.

    Google Scholar 

  3. Paley D, Herzenberg JE, Tetsworth K, McKie J, Bhave A. Deformity planning for frontal and sagittal plane corrective osteotomies. Orthop Clin North Am. 1994;25(3):425–65.

    PubMed  CAS  Google Scholar 

  4. Capo JT, Kinchelow T, Orillaza NS, Rossy W. Accuracy of fluoroscopy in closed reduction and percutaneous fixation of simulated Bennett's fracture. J Hand Surg Am. 2009;34(4):637–41.

    Article  PubMed  Google Scholar 

  5. Probe RA. Lower extremity angular malunion: evaluation and surgical correction. J Am Acad Orthop Surg. 2003;11(5):302–11.

    Article  PubMed  Google Scholar 

  6. Belanger M, Fadale P. Compartment syndrome of the leg after arthroscopic examination of a tibial plateau fracture. Case report and review of the literature. Arthroscopy. 1997;13(5):646–51.

    Article  CAS  PubMed  Google Scholar 

  7. Ruch DS, Vallee J, Poehling GG, Smith BP, Kuzma GR. Arthroscopic reduction versus fluoroscopic reduction in the management of intra-articular distal radius fractures. Arthroscopy. 2004;20(3):225–30.

    Article  PubMed  Google Scholar 

  8. Krause M, Preiss A, Meenen NM, Madert J, Frosch KH. ‘Fracturoscopy’ is superior to fluoroscopy in the articular reconstruction of complex tibial plateau fractures – an arthroscopic assisted fracture reduction technique. J Orthop Trauma. 2016;30(8):437–44.

    Article  PubMed  Google Scholar 

  9. Lobenhoffer P, Schulze M, Gerich T, Lattermann C, Tscherne H. Closed reduction/percutaneous fixation of tibial plateau fractures: arthroscopic versus fluoroscopic control of reduction. J Orthop Trauma. 1999;13(6):426–31.

    Article  CAS  PubMed  Google Scholar 

  10. Nelson DW, Duwelius PJ. CT-guided fixation of sacral fractures and sacroiliac joint disruptions. Radiology. 1991;180:527–32.

    Article  CAS  PubMed  Google Scholar 

  11. Duwelius PJ, Van Allen M, Bray TJ, Nelson D. Computed tomography-guided fixation of unstable posterior pelvic ring disruptions. J Orthop Trauma. 1992;6(4):420–6.

    Article  CAS  PubMed  Google Scholar 

  12. Cole RJ, Bindra RR, Evanoff BA, Gilula LA, Yamaguchi K, Gelberman RH. Radiographic evaluation of osseous displacement following intra-articular fractures of the distal radius: reliability of plain radiography versus computed tomography. J Hand Surg [Am]. 1997;22:792–800.

    Article  CAS  Google Scholar 

  13. Borrelli J Jr, Goldfarb C, Catalano L, Evanoff BA. Assessment of articular fragment displacement in acetabular fractures: a comparison of computerized tomography and plain radiographs. J Orthop Trauma. 2002;16:449–56.

    Article  PubMed  Google Scholar 

  14. Moed BR, Carr SE, Gruson KI, Watson JT, Craig JG. Computed tomographic assessment of fractures of the posterior wall of the acetabulum after operative treatment. J Bone Jt Surg Am. 2003;85-A:512–22.

    Article  Google Scholar 

  15. Hott JS, Papadopoulos SM, Theodore N, Dickman CA, Sonntag VK. Intraoperative Iso-C C-arm navigation in cervical spinal surgery: Review of the first 52 cases. Spine. 2004;29(24):2856–60.

    Article  PubMed  Google Scholar 

  16. Hsu AR, Gross CE, Lee S. Intraoperative O-arm computed tomography evaluation of syndesmotic reduction: case report. Foot Ankle Int. 2013;34(5):753–9.

    Article  PubMed  Google Scholar 

  17. Gösling T, Klingler K, Geerling J, Shin H, Fehr M, Krettek C, Hüfner T. Improved intra-operative reduction control using a three-dimensional mobile image intensifier – a proximal tibia cadaver study. Knee. 2009;16(1):58–63.

    Article  PubMed  Google Scholar 

  18. Mehling I, Rittstieg P, Mehling AP, Küchle R, Müller LP, Rommens PM. Intraoperative C-arm CT imaging in angular stable plate osteosynthesis of distal radius fractures. J Hand Surg Eur Vol. 2013;38(7):751–7.

    Article  CAS  PubMed  Google Scholar 

  19. Eckardt H, Lind M. Effect of intraoperative three-dimensional imaging during the reduction and fixation of displaced calcaneal fractures on articular congruence and implant fixation. Foot Ankle Int. 2015;36(7):764–73.

    Article  PubMed  Google Scholar 

  20. Grossterlinden L, Nuechtern J, Begemann PG, Fuhrhop I, Petersen JP, Ruecker A, Rupprecht M, Lehmann W, Schumacher U, Rueger JM, Briem D. Computer-assisted surgery and intraoperative three-dimensional imaging for screw placement in different pelvic regions. J Trauma. 2011;71(4):926–32.

    Article  PubMed  Google Scholar 

  21. Luria S, Safran O, Zinger G, Mosheiff R, Liebergall M. Intraoperative 3-dimensional imaging of scaphoid fracture reduction and fixation. Orthop Traumatol Surg Res. 2015;101(3):353–7.

    Article  CAS  PubMed  Google Scholar 

  22. Eckardt H, Lind D, Toendevold E. Open reduction and internal fixation aided by intraoperative 3-dimensional imaging improved the articular reduction in 72 displaced acetabular fractures. Acta Orthop. 2015;86(6):684–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weil YA, Liebergall M, Mosheiff R, Singer SB, Joskowicz L, Khoury A. Assessment of two 3-D fluoroscopic systems for articular fracture reduction: a cadaver study. Int J Comput Assist Radiol Surg. 2011;6(5):685–92.

    Article  PubMed  Google Scholar 

  24. Herscovici D Jr, Scaduto JM. Assessing leg length after fixation of comminuted femur fractures. Clin Orthop Relat Res. 2014;472(9):2745–50.

    Article  PubMed  Google Scholar 

  25. Terry MA, Winell JJ, Green DW, Schneider R, Peterson M, Marx RG, Widmann RF. Measurement variance in limb length discrepancy: Clinical and radiographic assessment of interobserver and intraobserver variability. J Pediatr Orthop. 2005;25:197–201.

    Article  PubMed  Google Scholar 

  26. Sabharwal S, Kumar A. Methods for assessing leg length discrepancy. Clin Orthop Relat Res. 2008;466(12):2910–22.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jaarsma RL, Pakviz DFM, Verdonschot N, et al. Rotational malalignment after intramedullary nailing of femoral fractures. J Orthop Trauma. 2004;18:403–9.

    Article  CAS  PubMed  Google Scholar 

  28. Puloski S, Romano C, Buckley R, Powell J. Rotational malalignment of the tibia following reamed intramedullary nail fixation. J Orthop Trauma. 2004;18:397–402.

    Article  CAS  PubMed  Google Scholar 

  29. Krettek C, Miclau T, Grun O, et al. Intraoperative control of axes, rotation and length in femoral and tibial fractures. Technical note. Injury. 1998;29(Suppl 3):C29–39.

    Article  PubMed  Google Scholar 

  30. Jeanmart L, Baert AL, Wackenheim A. Computer tomography of neck, chest, spine and limbs. Atlas of pathologic computer tomography, vol. 3. New York, NY: Springer-Verlag; 1983. p. 171–7.

    Google Scholar 

  31. Clementz BG. Assessment of tibial torsion and rotational deformity with a new fluoroscopic technique. Clin Orthop Rel Res. 1989;245:199–209.

    Google Scholar 

  32. Clementz BG. Tibial torsion measured in normal adults. Acta Orthop Scand. 1988;59(4):441–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Hak M.D., M.B.A., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hak, D.J. (2018). Assessment of Reduction. In: Giannoudis, P. (eds) Fracture Reduction and Fixation Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-68628-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68628-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68627-1

  • Online ISBN: 978-3-319-68628-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics