Advertisement

Investigation of Heat Distribution in Coated Indexable Tool Inserts

  • Marta Bogdan-Chudy
  • Piotr Nieslony
  • Grzegorz Krolczyk
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Article presents the results of temperature changes and heat distribution in a cemented carbide indexable tool insert with a TiAlN coating. The study presented in the article focused on heat distribution in a cutting tool–chip interface in two special cases: when a heat source is in contact with the TiAlN tool coating and when the heat source is in direct contact with a substrate plate. The thermophysical formulas were applied to both of them. The change of heat flux as a function of the distance from the heat source contact point along with experimental data was examined. The experimental data for the heat propagation in the cutting tool point have been gathered using an authors’ test stand.

Keywords

Heat distribution Tool coating Tool protection Machining 

References

  1. 1.
    Kupczyk, M.J.: Cutting edges with high hardness made of nanocrystalline cemented carbides. Int. J. Refract. Met. Hard Mater. 49, 249–255 (2015)CrossRefGoogle Scholar
  2. 2.
    Wojciechowski, S., Twardowski, P., Pelic, M., Maruda, R.W., Barrans, S., Krolczyk, G.M.: Precision surface characterization for finish cylindrical milling with dynamic tool displacements model. Precis. Eng. 46, 158–165 (2016)CrossRefGoogle Scholar
  3. 3.
    Maruda, R.W., Krolczyk, G.M., Nieslony, P., Wojciechowski, S., Michalski, M., Legutko, S.: The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J. Manuf. Process. 24(P1), 107–115 (2016)Google Scholar
  4. 4.
    Wojciechowski, S., Twardowski, P., Wieczorowski, M.: Surface texture analysis after ball end milling with various surface inclination of hardened steel. Metrol. Meas. Syst. 21, 145–156 (2014)CrossRefGoogle Scholar
  5. 5.
    Zaleski, K.: Study on the properties of surface—active fluids used in burnishing and shot peening processes. Adv. Sci. Technol. Res. J. 10, 235–239 (2016)CrossRefGoogle Scholar
  6. 6.
    Feldshtein, E., Jozwik, J., Legutko, S.: The influence of the conditions of emulsion mist formation on the surface roughness of AISI 1045 steel after finish turning. Adv. Sci. Technol. Res. J. 10, 144–149 (2016)CrossRefGoogle Scholar
  7. 7.
    Maruda, R.W., Krolczyk, G.M., Feldshtein, E., Nieslony, P., Tyliszczak, B., Pusavec, F.: Tool wear characterizations in finish turning of AISI 1045 carbon steel for MQCL conditions. Wear 372–373, 54–67 (2017)CrossRefGoogle Scholar
  8. 8.
    Merola, M., Ruggiero, A., De Mattia, J.S., Affatato, S.: On the tribological behavior of retrieved hip femoral heads affected by metallic debris. A comparative investigation by stylus and optical profilometer for a new roughness measurement protocol. Measurement 90, 365–371 (2016)CrossRefGoogle Scholar
  9. 9.
    Mrkvica, I., Neslušan, M., Čep, R., Sléha, V.: Properties and comparison of PVD coatings. Tehnicki Vjesnik 23(2), 569–574 (2016)Google Scholar
  10. 10.
    Heigel, J.C., Whitenton, E., Lane, B., Donmez, M.A., Madhavan, V., Moscoso-Kingsley, W.: Infrared measurement of the temperature at the tool–chip interface while machining Ti–6Al–4 V. J. Mater. Process. Technol. 243, 123–130 (2017)CrossRefGoogle Scholar
  11. 11.
    Santhanakrishnan, M., Sivasakthivel, P.S., Sudhakaran, R.: Modeling of geometrical and machining parameters on temperature rise while machining Al 6351 using response surface methodology and genetic algorithm. J. Braz. Soc. Mech. Sci. Eng. 39(2), 487–496 (2017)CrossRefGoogle Scholar
  12. 12.
    Mia, M., Dhar, N.R.: Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. Int. J. Adv. Manuf. Technol. 88(1–4), 739–753 (2017)CrossRefGoogle Scholar
  13. 13.
    Zhang, C., Gao, F., Yan, L.: Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature. Precis. Eng. 47, 231–238 (2017)CrossRefGoogle Scholar
  14. 14.
    Malakizadi, A., Gruber, H., Sadik, I., Nyborg, L.: An FEM-based approach for tool wear estimation in machining. Wear 368–369, 10–24 (2016)CrossRefGoogle Scholar
  15. 15.
    Niesłony, P., Grzesik, W., Habrat, W.: Experimental and simulation investigations of face milling process of Ti-6Al-4V titanium alloy. Adv. Manuf. Sci. Technol. 39, 39–52 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marta Bogdan-Chudy
    • 1
  • Piotr Nieslony
    • 1
  • Grzegorz Krolczyk
    • 1
  1. 1.Department of Manufacturing Engineering and Production AutomationOpole University of TechnologyOpolePoland

Personalised recommendations