Skip to main content

Using Echo State Networks for Cryptography

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10614)

Abstract

Echo state networks are simple recurrent neural networks that are easy to implement and train. Despite their simplicity, they show a form of memory and can predict or regenerate sequences of data. We make use of this property to realize a novel neural cryptography scheme. The key idea is to assume that Alice and Bob share a copy of an echo state network. If Alice trains her copy to memorize a message, she can communicate the trained part of the network to Bob who plugs it into his copy to regenerate the message. Considering a byte-level representation of in- and output, the technique applies to arbitrary types of data (texts, images, audio files, etc.) and practical experiments reveal it to satisfy the fundamental cryptographic properties of diffusion and confusion.

Keywords

  • Echo State Networks (ESNs)
  • Simple Recurrent Neural Network
  • Reservoir Neurons
  • Dummy Bytes
  • Ciphertext-only Attack

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68612-7_75
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-68612-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Abadi, M., Andersen, D.G.: Learning to protect communications with adversarial neural cryptography. arXiv:1610.06918 (2016)

  2. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16(08), 2129–2151 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Clark, M., Blank, D.: A neural-network based cryptographic system. In: Proceedings of the Midwest Artificial Intelligence and Cognitive Science Conference (1998)

    Google Scholar 

  4. Jäger, H.: The “echo state” approach to analysing and training recurrent neural networks. Technical report 148, GMD (2001)

    Google Scholar 

  5. Jäger, H.: Short term memory in echo state networks. Technical report 152, GMD (2002)

    Google Scholar 

  6. Kanter, I., Kinzel, W., Kanter, E.: Secure exchange of information by synchronization of neural networks. Europhys. Lett. 57(1), 141–147 (2002)

    CrossRef  MATH  Google Scholar 

  7. Klimov, A., Mityagin, A., Shamir, A.: Analysis of neural cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 288–298. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2_18

    CrossRef  Google Scholar 

  8. Li, C., Li, S., Zhang, D., Chen, G.: Chosen-plaintext cryptanalysis of a clipped-neural-network-based chaotic cipher. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 630–636. Springer, Heidelberg (2005). doi:10.1007/11427445_103

    CrossRef  Google Scholar 

  9. Lian, S.: A block cipher based on chaotic neural networks. Neurocomputing 72(46), 1296–1301 (2009)

    CrossRef  Google Scholar 

  10. Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, 2nd edn, pp. 659–686. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_36

    Google Scholar 

  11. Ramamurthy, R., Bauckhage, C., Buza, K., Wrobel, S.: Using Echo State Networks for Cryptography. arXiv:1704.01046 (2017)

  12. Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4), 656–715 (1949)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Wang, X.Y., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 62(3), 615–621 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Yu, W., Cao, J.: Cryptography based on delayed chaotic neural networks. Phys. Lett. A 356(45), 333–338 (2006)

    CrossRef  MATH  Google Scholar 

  15. Zhou, T., Liao, X., Chen, Y.: A novel symmetric cryptography based on chaotic signal generator and a clipped neural network. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004 Part II. LNCS, vol. 3174, pp. 639–644. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28648-6_102

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar Ramamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ramamurthy, R., Bauckhage, C., Buza, K., Wrobel, S. (2017). Using Echo State Networks for Cryptography. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10614. Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68612-7_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68611-0

  • Online ISBN: 978-3-319-68612-7

  • eBook Packages: Computer ScienceComputer Science (R0)