Skip to main content

Classification of Categorical Data in the Feature Space of Monotone DNFs

  • 3962 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10614)

Abstract

Nowadays, kernel based classifiers, such as SVM, are widely used on many different classification tasks. One of the drawbacks of these kind of approaches is their poor interpretability. In the past, some efforts have been devoted in designing kernels able to construct a more understandable feature space, e.g., boolean kernels, but only combinations of simple conjunctive clauses have been proposed.

In this paper, we present a family of boolean kernels, specifically, the Conjunctive kernel, the Disjunctive kernel and the DNF-kernel. These kernels are able to construct feature spaces with a wide spectrum of logical formulae. For all of these kernels, we provide a description of their corresponding feature spaces and efficient ways to calculate their values implicitly. Experiments on several categorical datasets show the effectiveness of the proposed kernels.

Keywords

  • Kernel methods
  • Boolean kernels
  • DNF
  • SVM

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68612-7_32
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-68612-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)

References

  1. Barakat, N., Bradley, A.P.: Rule extraction from support vector machines: a review. Neurocomputing 74(1–3), 178–190 (2010)

    CrossRef  Google Scholar 

  2. Fu, X., Ong, C., Keerthi, S., Hung, G.G., Goh, L.: Extracting the knowledge embedded in support vector machines. In: 2004 IEEE International Joint Conference on Neural Networks, vol. 1, p. 296, July 2004

    Google Scholar 

  3. Harris, D.M., Harris, S.L.: Digital Design and Computer Architecture, 2nd edn. Morgan Kaufmann, Boston (2013)

    MATH  Google Scholar 

  4. Khardon, R., Roth, D., Servedio, R.A.: Efficiency versus convergence of boolean kernels for on-line learning algorithms. J. Artif. Intell. Res. (JAIR) 24, 341–356 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Kusunoki, Y., Tanino, T.: Boolean kernels and clustering with pairwise constraints. In: 2014 IEEE International Conference on Granular Computing (GrC), pp. 141–146, October 2014

    Google Scholar 

  6. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  7. Nguyen, S.H., Nguyen, H.S.: Applications of Boolean kernels in rough sets. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) RSEISP 2014. LNCS, vol. 8537, pp. 65–76. Springer, Cham (2014). doi:10.1007/978-3-319-08729-0_6

    Google Scholar 

  8. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MATH  MathSciNet  Google Scholar 

  9. Sadohara, K.: Learning of Boolean functions using support vector machines. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS, vol. 2225, pp. 106–118. Springer, Heidelberg (2001). doi:10.1007/3-540-45583-3_10

    CrossRef  Google Scholar 

  10. Sadohara, K.: On a capacity control using Boolean kernels for the learning of Boolean functions. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 410–417 (2002)

    Google Scholar 

  11. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)

    CrossRef  MATH  Google Scholar 

  12. Zhang, Y., Li, Z., Cui, K.: DRC-BK: mining classification rules by using Boolean kernels. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganà, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 214–222. Springer, Heidelberg (2005). doi:10.1007/11424758_23

    CrossRef  Google Scholar 

  13. Zhang, Y., Li, Z., Kang, M., Yan, J.: Improving the classification performance of Boolean kernels by applying Occam’s razor (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Polato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Polato, M., Lauriola, I., Aiolli, F. (2017). Classification of Categorical Data in the Feature Space of Monotone DNFs. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10614. Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68612-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68611-0

  • Online ISBN: 978-3-319-68612-7

  • eBook Packages: Computer ScienceComputer Science (R0)