Abstract
Nowadays, kernel based classifiers, such as SVM, are widely used on many different classification tasks. One of the drawbacks of these kind of approaches is their poor interpretability. In the past, some efforts have been devoted in designing kernels able to construct a more understandable feature space, e.g., boolean kernels, but only combinations of simple conjunctive clauses have been proposed.
In this paper, we present a family of boolean kernels, specifically, the Conjunctive kernel, the Disjunctive kernel and the DNF-kernel. These kernels are able to construct feature spaces with a wide spectrum of logical formulae. For all of these kernels, we provide a description of their corresponding feature spaces and efficient ways to calculate their values implicitly. Experiments on several categorical datasets show the effectiveness of the proposed kernels.
Keywords
- Kernel methods
- Boolean kernels
- DNF
- SVM
This is a preview of subscription content, access via your institution.
Buying options
References
Barakat, N., Bradley, A.P.: Rule extraction from support vector machines: a review. Neurocomputing 74(1–3), 178–190 (2010)
Fu, X., Ong, C., Keerthi, S., Hung, G.G., Goh, L.: Extracting the knowledge embedded in support vector machines. In: 2004 IEEE International Joint Conference on Neural Networks, vol. 1, p. 296, July 2004
Harris, D.M., Harris, S.L.: Digital Design and Computer Architecture, 2nd edn. Morgan Kaufmann, Boston (2013)
Khardon, R., Roth, D., Servedio, R.A.: Efficiency versus convergence of boolean kernels for on-line learning algorithms. J. Artif. Intell. Res. (JAIR) 24, 341–356 (2005)
Kusunoki, Y., Tanino, T.: Boolean kernels and clustering with pairwise constraints. In: 2014 IEEE International Conference on Granular Computing (GrC), pp. 141–146, October 2014
Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
Nguyen, S.H., Nguyen, H.S.: Applications of Boolean kernels in rough sets. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) RSEISP 2014. LNCS, vol. 8537, pp. 65–76. Springer, Cham (2014). doi:10.1007/978-3-319-08729-0_6
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Sadohara, K.: Learning of Boolean functions using support vector machines. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS, vol. 2225, pp. 106–118. Springer, Heidelberg (2001). doi:10.1007/3-540-45583-3_10
Sadohara, K.: On a capacity control using Boolean kernels for the learning of Boolean functions. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 410–417 (2002)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)
Zhang, Y., Li, Z., Cui, K.: DRC-BK: mining classification rules by using Boolean kernels. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganà, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 214–222. Springer, Heidelberg (2005). doi:10.1007/11424758_23
Zhang, Y., Li, Z., Kang, M., Yan, J.: Improving the classification performance of Boolean kernels by applying Occam’s razor (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Polato, M., Lauriola, I., Aiolli, F. (2017). Classification of Categorical Data in the Feature Space of Monotone DNFs. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10614. Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-68612-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68611-0
Online ISBN: 978-3-319-68612-7
eBook Packages: Computer ScienceComputer Science (R0)