Skip to main content

Radius-Margin Ratio Optimization for Dot-Product Boolean Kernel Learning

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10614)

Abstract

It is known that any dot-product kernel can be seen as a linear non-negative combination of homogeneous polynomial kernels. In this paper, we demonstrate that, under mild conditions, any dot-product kernel defined on binary valued data can be seen as a linear non-negative combination of boolean kernels, specifically, monotone conjunctive kernels (mC-kernels) with different degrees. We also propose a new radius-margin based multiple kernel learning (MKL) algorithm to learn the parameters of the combination. An empirical analysis of the MKL weights distribution shows that our method is able to give solutions which are more sparse and effective compared to the ones of state-of-the-art margin-based MKL methods. The empirical analysis have been performed on eleven UCI categorical datasets.

Keywords

  • Multiple kernel learning
  • Radius-margin optimization
  • Boolean kernels

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68612-7_21
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-68612-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Aiolli, F., Donini, M.: EasyMKL: a scalable multiple kernel learning algorithm. Neurocomputing 169, 215–224 (2015)

    CrossRef  Google Scholar 

  2. Chung, K., Kao, W., Sun, C., Wang, L., Lin, C.: Radius margin bounds for support vector machines with the RBF kernel. Neural Comput. 15(11), 2643–2681 (2003). http://dx.doi.org/10.1162/089976603322385108

    CrossRef  MATH  Google Scholar 

  3. Donini, M., Aiolli, F.: Learning deep kernels in the space of dot product polynomials. Mach. Learn. 106, 1–25 (2016)

    MathSciNet  Google Scholar 

  4. Duan, K., Keerthi, S.S., Poo, A.N.: Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51(Complete), 41–59 (2003)

    CrossRef  Google Scholar 

  5. Kalousis, A., Do, H.T.: Convex formulations of radius-margin based support vector machines. In: Proceedings of the 30th International Conference on Machine Learning, vol. 28, pp. 169–177 (2013)

    Google Scholar 

  6. Lauriola, I., Donini, M., Aiolli, F.: Learning dot-product polynomials for multiclass problems. In: Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (2017)

    Google Scholar 

  7. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  8. Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9(1), 96–108 (1942)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivano Lauriola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lauriola, I., Polato, M., Aiolli, F. (2017). Radius-Margin Ratio Optimization for Dot-Product Boolean Kernel Learning. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10614. Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68612-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68611-0

  • Online ISBN: 978-3-319-68612-7

  • eBook Packages: Computer ScienceComputer Science (R0)