Skip to main content

Integration of Three-Dimensional Macroporous Nanoelectronics with Materials

  • Chapter
  • First Online:
Book cover Biomimetics Through Nanoelectronics

Part of the book series: Springer Theses ((Springer Theses))

  • 753 Accesses

Abstract

Seamless integration of embedded multifunctional electronics with host materials could transfer inactive materials into active systems, which allow the communication between the materials and external environment, and create a smart system [1, 2]. Traditional electronics are planar and rigid, however, most materials and systems in our daily life are three-dimensional (3D) and non-planar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Reuss RH, Hopper DG, Park JG (2006) ) Macroelectronics. MRS Bull 31:447

    Google Scholar 

  2. Thakor, NV (2013) Translating the brain-machine interface. Sci Transl Med 5, 210ps17

    Google Scholar 

  3. Kim DH et al Epidermal electronics. (2011) Science 33:838

    Google Scholar 

  4. Lu N, Kim DH (2013) Flexible and stretchable electronics paving the way for soft robotics. Soft Robot 1:53

    Google Scholar 

  5. Kim DH et al (2010) Dissolvable films of silk fibroin for ultrathin, conformal bio-integrated electronics. Nat Mater 9:511

    Google Scholar 

  6. Wise G, Eng KDIEEE (2005) Silicon microsystems for neuroscience and neural prostheses. Med Biol Mag 24:22

    Google Scholar 

  7. Normann RA (2007) Technology insight: future neuroprosthetic therapies for disorders of the nervous system. Nat Clin Pract Neuro 3:444

    Google Scholar 

  8. Seymour JP, Kipke DR (2007) Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28:3594

    Google Scholar 

  9. Fan Z, Ho JC, Jacobson ZA, Razavi H, Javey A (2008) Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proc Natl Acad Sci U S A 105:11066

    Google Scholar 

  10. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289

    Google Scholar 

  11. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294

    Google Scholar 

  12. He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1:42

    Google Scholar 

  13. Lee CH, Kim DR, Zheng X (2009) Fabricating nanowire devices on diverse substrates by simple transfer-printing methods. Proc Natl Acad Sci U S A 107:9950

    Google Scholar 

  14. Tsen AW, Donev LAK, Kurt H, Herman LH, Park J (2009) Imaging the electrical conductance of individual carbon nanotubes with photothermal current microscopy. Nat Nanotechnol 4:108

    Google Scholar 

  15. Huang B, Wang WQ, Bates M, Zhuang XW (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810

    Google Scholar 

  16. Toprak E, Balci H, Blehm BH, Selvin PR (2007) Three-dimensional particle tracking via bifocal imaging. Nano Lett 7:2043

    Google Scholar 

  17. Cohen-Karni T et al (2012) Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett 12:2639

    Google Scholar 

  18. Jiang Z, Qing Q, Xie P, Gao R, Lieber CM (2012) Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett 12:1711

    Google Scholar 

  19. Hayden O, Agarwal R, Lieber CM (2006) Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat Mater 5:352

    Google Scholar 

  20. Patolsky F, Timko BP, Zheng G, Lieber CM Nanowire-based nanoelectronic devices in the life sciences. (2007) MRS Bullet 32:142

    Google Scholar 

  21. Tian B et al (2010) Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329:831

    Google Scholar 

  22. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211

    Google Scholar 

  23. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463

    Google Scholar 

  24. Glicklis R, Merchuk JC, Cohen S (2004) Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnol Bioeng 86:672

    Google Scholar 

  25. Ahn Y, Dunning J, Park J (2005) Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett 5:1367

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J. (2018). Integration of Three-Dimensional Macroporous Nanoelectronics with Materials. In: Biomimetics Through Nanoelectronics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-68609-7_3

Download citation

Publish with us

Policies and ethics