Skip to main content

Three-Dimensional Macroporous Nanoelectronics Network

  • Chapter
  • First Online:
Biomimetics Through Nanoelectronics

Part of the book series: Springer Theses ((Springer Theses))

  • 752 Accesses

Abstract

Seamlessly merging functional electronic circuits as embedded systems in a minimally-invasive manner with host materials in 3D could serve as a pathway for creating “very smart” systems because those embedded systems would transform conventional inactive materials into active systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Reuss RH, Hopper DG, Park JG (2006) Macroelectronics. MRS Bull 31:447

    Google Scholar 

  2. Tian B et al (2012) Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater 11:986

    Google Scholar 

  3. Al-sarawi SF, Abbott D, Franzon PD (1998) A review of 3-D packaging technology. IEEE Trans Compon Pag Manuf Technol 21:2

    Google Scholar 

  4. Benkart P et al (2005)  3D chip stack technology using through-chip interconnects. IEEE Des Test Comput 22:512

    Google Scholar 

  5. Ahn JH et al (2006) Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314:1754

    Google Scholar 

  6. Javey A, Nam S, Friedman RS, Yan H, Lieber CM (2007) Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett 7:773

    Google Scholar 

  7. Liu J et al (2013) Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc Natl Acad Sci USA 110:6694–6699

    Google Scholar 

  8. Wu Y et al (2004) Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett 4:433

    Google Scholar 

  9. Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1

    Google Scholar 

  10. Tian B et al (2010) Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329:831

    Google Scholar 

  11. Yang C, Zhong ZH, Lieber CM (2005) Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310:1304

    Google Scholar 

  12. Tian BZ, Xie P, Kempa TJ, Bell DC, Lieber CM (2009) Single-crystalline kinked semiconductor nanowire superstructures. Nat Nanotechnol 4:824

    Google Scholar 

  13. Fan Z et al (2008) Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett 8:20

    Google Scholar 

  14. Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841

    Google Scholar 

  15. Lieber CM, Wang ZL (2007) Functional nanowires. MRS Bull 32:99

    Google Scholar 

  16. Qian F, Gradecak S, Li Y, Wen Y, Lieber CM (2005) Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett 5:2287

    Google Scholar 

  17. Tian B et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885

    Google Scholar 

  18. Gao R et al (2012) Outside looking in: nanotube transistor intracellular sensors. Nano Lett 12:3329

    Google Scholar 

  19. Jiang X et al (2011) Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc Natl Acad Sci USA 108:12212

    Google Scholar 

  20. Yan H et al (2011) Programmable nanowire circuits for nanoprocessors. Nature 470:240

    Google Scholar 

  21. Xiang J et al (2006) High performance field effect transistors based on Ge/Si nanowire heterostructures. Nature 441:489

    Google Scholar 

  22. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289

    Google Scholar 

  23. Qin Y, Wang XD, Wang ZL (2008) Microfibre-nanowire hybrid structure for energy scavenging. Nature 451:809

    Google Scholar 

  24. Chan CK et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31

    Google Scholar 

  25. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294

    Google Scholar 

  26. Leong TG et al (2009) Tetherless thermobiochemically actuated microgrippers. Proc Natl Acad Sci USA 106:703

    Google Scholar 

  27. Freund LB (2000) Substrate curvature due to thin film mismatch strain in the nonlinear deformation range. J Mech Phys Solids 48:1159

    Google Scholar 

  28. Kim DH et al (2011) Epidermal electronics. Science 333:838

    Google Scholar 

  29. Landau LD, Lifshitz EM (1986) Theory of elasticity, 3rd edn, Elsevier, pp 67–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J. (2018). Three-Dimensional Macroporous Nanoelectronics Network. In: Biomimetics Through Nanoelectronics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-68609-7_2

Download citation

Publish with us

Policies and ethics