Skip to main content

Introduction

  • Chapter
  • First Online:
Biomimetics Through Nanoelectronics

Part of the book series: Springer Theses ((Springer Theses))

  • 727 Accesses

Abstract

In the past half-century, advances in electronics have been driven by increases in their complexity and performance, and decreases in unit size (Moore’s law) (Moore in Electronics 38:114, 1965 [1]). The mainstream microelectronics industry continues to provide ever-increasing performance and functionality and brings new technologies in computing, memory, and telecommunication that change the way we live [2]. These developments have in turn spurred interest in “macroelectronics,” which requires the low-cost distribution of nanoelectronic units and circuits over the largest possible area in unconventional configurations, for instance on flexible substrates and in 3D geometries (Reuss et al. in MRS Bull 31:447, 2006 [3]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Moore G (1965) Cramming more components onto integrated circuits. Electronics 38:114

    Google Scholar 

  2. International Technology Roadmap for Semiconductors (2005) Ed., www.itrs.net/common/2005ITRS/Home2005.htm

  3. Reuss RH, Hopper DG, Park JG (2006) Macroelectronics. MRS Bull 31:447

    Google Scholar 

  4. Gelinck GH et al (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3:106

    Google Scholar 

  5. Rogers JA et al (2001) Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci U S A 98:4835

    Google Scholar 

  6. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911

    Google Scholar 

  7. Dodabalapur A (2006) Organic and polymer transistors for electronics. Mater Today 9:24

    Google Scholar 

  8. Someya T et al (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci U S A 102:12321

    Google Scholar 

  9. Yu G, Gao J, Hummelen JC, Wudi F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789

    Google Scholar 

  10. Shaheen SE, Ginley DS, Jabbour GE (2005) Organic-Based Photovoltaics: Toward Low-Cost Power Generation. MRS Bull 30:10

    Google Scholar 

  11. Ouyang J, Chu CW, Szmanda CR, Ma L, Yang Y (2004) Programmable polymer thin film and non-volatile memory device. Nat Mater 3:918

    Google Scholar 

  12. Baude PF et al (2003) Pentacene-based radio-frequency identification circuitry. Appl Phys Lett 82:3964

    Google Scholar 

  13. Cantatore E et al (2007) A 13.56-MHz RFID system based on organic transponders. IEEE J Solid-State Circuits 42:84

    Google Scholar 

  14. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3:434

    Google Scholar 

  15. Kim DH et al (2011) Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater 10:316

    Google Scholar 

  16. Kim DH et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9:511

    Google Scholar 

  17. Kim DH et al (2011) Epidermal electronics. Science 333:838

    Google Scholar 

  18. Tian B et al (2010) Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329:831

    Google Scholar 

  19. Arns RG (1998) The other transistor: early history of the metal-oxide semiconductor field-effect transistor. Eng Sci Educ J 7:233

    Google Scholar 

  20. Vogel EM (2007) Technology and metrology of new electronic materials and devices. Nat Nanotechnol 2:25

    Google Scholar 

  21. Meitl MA et al (2006) Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 5:33

    Google Scholar 

  22. Sun Y, Kim S, Adesida I, Rogers JA (2005) Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates. Appl Phys Lett 87:083501

    Google Scholar 

  23. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545

    Google Scholar 

  24. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115

    Google Scholar 

  25. Iijima S (1991) Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 354:56

    Google Scholar 

  26. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208

    Google Scholar 

  27. Schreiber F (2000) Structure and growth of self-assembling monolayers. Prog Surf Sci 65:151

    Google Scholar 

  28. Li XS et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312

    Google Scholar 

  29. Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706

    Google Scholar 

  30. Whang D, Jin S, Wu Y, Lieber CM (2003) Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett 3:1255

    Google Scholar 

  31. Lieber CM (2003) Nanoscale science and technology: building a big future from small things. MRS Bull 28:486

    Google Scholar 

  32. Duan XF, Lieber CM (2000) General synthesis of compound semiconductor nanowires. Adv Mater 12:298

    Google Scholar 

  33. Cui Y, Duan XF, Hu JT, Lieber CM (2000) Doping and electrical transport in silicon nanowires. J Phys Chem B 104:5213

    Google Scholar 

  34. Yang PD et al (2002) Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater 12:323

    Google Scholar 

  35. Hu JT, Ouyang M, Yang PD, Lieber CM (1999) Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399:48

    Google Scholar 

  36. Huang Y et al (2001) Logic gates and computation from assembled nanowire building blocks. Science 294:1313

    Google Scholar 

  37. Gudiksen MS, Lieber CM (2000) Diameter-selective synthesis of semiconductor nanowires. J Am Chem Soc 122:8801

    Google Scholar 

  38. Zheng GF, Lu W, Jin S, Lieber CM (2004) Synthesis and fabrication of high‐performance n‐type silicon nanowire transistors. Adv Mater 16:1890

    Google Scholar 

  39. Zhong ZH, Qian F, Wang DL, Lieber CM (2003) Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett 3:343

    Google Scholar 

  40. Yang C, Zhong ZH, Lieber CM (2005) Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310:1304

    Google Scholar 

  41. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617

    Google Scholar 

  42. Lauhon LJ, Gudiksen MS, Wang CL, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420:57

    Google Scholar 

  43. Wang D, Qian F, Yang C, Zhong ZH, Lieber CM (2004) Rational growth of branched and hyperbranched nanowire structures. Nano Lett 4:871

    Google Scholar 

  44. Tian BZ, Xie P, Kempa TJ, Bell DC, Lieber CM (2009) Single-crystalline kinked semiconductor nanowire superstructures. Nat Nanotechnol 4:824

    Google Scholar 

  45. Xiang J et al (2006) High performance field effect transistors based on Ge/Si nanowire heterostructures. Nature 441:489

    Google Scholar 

  46. Lu W, Lieber CMJ (2006) Semiconductor nanowires. Phys D-Appl Phys 39:R387

    Google Scholar 

  47. Yan H et al (2011) Programmable nanowire circuits for nanoprocessors. Nature 470:240

    Google Scholar 

  48. Yao J, Yan H, Das S, Klemic J, Ellenbogen J, Lieber CM (2014) Nanowire nanocomputer as a finite-state machine. Proc Natl Acad Sci U S A 111:2431

    Google Scholar 

  49. Duan XF, Lieber CM (2000) Laser-assisted catalytic growth of single crystal GaN nanowires. J Am Chem Soc 122:188

    Google Scholar 

  50. Liu JL, Cai SJ, Jin GL, Thomas SG, Wang KL (1999) Growth of Si whiskers on Au/Si (111) substrate by gas source molecular beam epitaxy (MBE). J Cryst Growth 200:106

    Google Scholar 

  51. Wu YY, Yang PD (2001) Direct observation of vapor− liquid− solid nanowire growth. J Am Chem Soc 123:3165

    Google Scholar 

  52. Wu Y et al (2004) Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett 4:433

    Google Scholar 

  53. Hansen M, Anderko K (1958) Constitution of binary alloys. McGraw-Hill

    Google Scholar 

  54. Tian B et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885

    Google Scholar 

  55. Jiang X et al (2011) Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc Natl Acad Sci U S A 108:12212

    Google Scholar 

  56. Fortuna SA, Li X (2009) GaAs MESFET with a high-mobility self-assembled planar nanowire channel. IEEE Electron Device Lett 30:593

    Google Scholar 

  57. Jiang X, Xiong Q, Nam S, Qian F, Li Y, Lieber CM (2007) InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett 7:3214

    Google Scholar 

  58. Duan XF, Niu CM, Sahi V, Chen J, Parce JW, Empedocles S, Goldman JL (2003) High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425:274

    Google Scholar 

  59. Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630

    Google Scholar 

  60. Yu G, Cao A, Lieber CM (2007) Nat Nanotechnol 2:372

    Google Scholar 

  61. Tao AR, Huang J, Yang P (2008) Large-area blown bubble films of aligned nanowires and carbon nanotubes. Acc Chem Res 41:1662

    Google Scholar 

  62. Wang DW, Chang YL, Liu Z, Dai H (2005) Oxidation resistant germanium nanowires: bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly. J Am Chem Soc 127:11871

    Google Scholar 

  63. Fan Z et al (2008) Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett 8:20

    Google Scholar 

  64. Javey A, Nam S, Friedman RS, Yan H, Lieber CM (2007) Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett 7:773

    Google Scholar 

  65. Nam S, Jiang X, Xiong Q, Ham D, Lieber CM (2009) Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc Natl Acad Sci U S A 106:21035

    Google Scholar 

  66. McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6:379

    Google Scholar 

  67. Timko BP et al (2009) Electrical recording from hearts with flexible nanowire device arrays. Nano Lett 9:914

    Google Scholar 

  68. Takei K et al (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821

    Google Scholar 

  69. Yao J, Yan H, Lieber CM (2013) A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat Nanotechnol 8:329

    Google Scholar 

  70. Ahn JH et al (2006) Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314:1754

    Google Scholar 

  71. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294

    Google Scholar 

  72. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechol 6:615

    Google Scholar 

  73. Rothberg JM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348

    Google Scholar 

  74. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Inc.

    Google Scholar 

  75. Zipes DP, Jalife J (2004) Cardiac electrophysiology: from cell to bedside. Saunders

    Google Scholar 

  76. Dhein S, Mohr FW, Delmar M (2005) Practical methods in cardiovascular research. Springer, Berlin

    Google Scholar 

  77. Davie JT et al (2006) Dendritic patch-clamp recording. Nat Protocols 1:1235

    Google Scholar 

  78. Halbach MD, Egert U, Hescheler J, Banach K (2003) Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol Biochem 13:271

    Google Scholar 

  79. Meyer T, Boven KH, Gunther E, Fejtl M (2004) Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Saf 27:763

    Google Scholar 

  80. Erickson J, Tooker A, Tai YC, Pine J (2008) Caged neuron MEA: A system for long-term investigation of cultured neural network connectivity. J Neurosci Method 175:1

    Google Scholar 

  81. Law JKY et al (2009) The use of microelectrode array (MEA) to study the protective effects of potassium channel openers on metabolically compromised HL-1 cardiomyocytes. Physiol Meas 30:155

    Google Scholar 

  82. Ingebrandt S, Yeung C-K, Krause M, Offenhausser A (2001) Cardiomyocyte-transistor-hybrids for sensor application. Biosens Bioelectron 16:565

    Google Scholar 

  83. Yeung C-K, Ingebrandt S, Krause M, Offenhausser A, Knoll W (2001) Validation of the use of field effect transistors for extracellular signal recording in pharmacological bioassays. J Pharmacol Toxicol Meth 45:207

    Google Scholar 

  84. Cohen A, Shappir J, Yitzchiak S, Spira ME (2006) Experimental and theoretical analysis of neuron-transistor hybrid electrical coupling: the relationships between the electro-anatomy of cultured Aplysia neurons and the recorded field potentials. Biosens Bioelectron 22:656

    Google Scholar 

  85. Cohen A, Shappir J, Yitzchaik S, Spira ME (2008) Experimental and theoretical analysis of neuron-transistor hybrid electrical coupling: the relationships between the electro-anatomy of cultured Aplysia neurons and the recorded field potentials. Biosens Bioelectron 23:811

    Google Scholar 

  86. Lu Z-L et al (2004) Electrocardiography in adult congenital heart disease. Electrocardiology 14:11

    Google Scholar 

  87. Reppel M et al (2004) Microelectrode arrays: a new tool to measure embryonic heart activity. J Electrocardiol 37:104

    Google Scholar 

  88. Fromherz P (2002) Electrical interfacing of nerve cells and semiconductor chips. ChemPhysChem 2:276

    Google Scholar 

  89. Spira ME, Hai A (2013) Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol 8:83

    Google Scholar 

  90. Xie C, Lin Z, Hanson L, Cui Y, Cui B (2012) Intracellular recording of action potentials by nanopillar electroporation. Nat Nanotechnol 7:185

    Google Scholar 

  91. Robinson JT et al (2012) Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat Nanotechnol 7:180

    Google Scholar 

  92. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289

    Google Scholar 

  93. Duan X et al (2012) Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotechnol 7:174

    Google Scholar 

  94. Gao R et al (2012) Outside looking in: nanotube transistor intracellular sensors. Nano Lett 12:3329

    Google Scholar 

  95. Qing Q, Jiang Z, Xu L, Gao R, Mai L, Lieber CM (2014) Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat Nanotechnol 9:142

    Google Scholar 

  96. Jiang Z, Qing Q, Xie P, Gao R, Lieber CM (2012) Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett 12:1711

    Google Scholar 

  97. Shalek AK et al (2010) Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc Natl Acad Sci U S A 107:1870

    Google Scholar 

  98. Shalek AK et al (2012) Nanowire-mediated delivery enables functional interrogation of primary immune cells: application to the analysis of chronic lymphocytic leukemia. Nano Lett 12:6498

    Google Scholar 

  99. Yosef N et al (2013) Dynamic regulatory network controlling TH17 cell differentiation. Nature 496:461

    Google Scholar 

  100. Empedocles SA, Bawendi MG (1997) Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278:2114

    Google Scholar 

  101. Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538

    Google Scholar 

  102. Langer R (1998) Drug delivery and targeting. Nature 392:5

    Google Scholar 

  103. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16

    Google Scholar 

  104. Retterer ST et al (2004) Model neural prostheses with integrated microfluidics: a potential intervention strategy for controlling reactive cell and tissue responses. IEEE Trans Biomed Eng 51:2063

    Google Scholar 

  105. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13

    Google Scholar 

  106. Viventi J et al (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2:24ra22

    Google Scholar 

  107. Viventi J et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14:1599

    Google Scholar 

  108. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73

    Google Scholar 

  109. Jones K, Campbell P, Normann R (1992) A glass/silicon composite intracortical electrode array. Ann Biomed Eng 20:423

    Google Scholar 

  110. Bradley K (2006) The technology: the anatomy of a spinal cord and nerve root stimulator: the lead and the power source. Pain Med 7:S27

    Google Scholar 

  111. Harnack D et al (2004) The effects of electrode material, charge density and stimulation duration on the safety of high-frequency stimulation of the subthalamic nucleus in rats. J Neurosci Meth 138:207

    Google Scholar 

  112. Kerns JM, Fakhouri AJ, Weinrib HP, Freeman JA (1991) Electrical stimulation of nerve regeneration in the rat: the early effects evaluated by a vibrating probe and electron microscopy. Neuroscience 40:93

    Google Scholar 

  113. Merrill DR, Bikson M, Jefferys JGR (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Meth 141:171

    Google Scholar 

  114. Alivisatos AP et al (2012) The brain activity map project and the challenge of functional connectomics. Neuron 74:970

    Google Scholar 

  115. Alivisatos AP et al (2013) Nanotools for neuroscience and brain activity mapping. ACS Nano 7:1850

    Google Scholar 

  116. Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL (2010) An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 31:4113

    Google Scholar 

  117. Cao HQ, Jiang X, Chai C, Chew SYJ (2010) RNA interference by nanofiber-based siRNA delivery system. Cont Release 144:203

    Google Scholar 

  118. Deisseroth K (2012) Optogenetics and psychiatry: applications, challenges, and opportunities. Biol Psychiatry 71:1030

    Google Scholar 

  119. Zamft BM et al (2012) Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing. PLoS ONE 7:e43876

    Google Scholar 

  120. Lee JH et al (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J. (2018). Introduction. In: Biomimetics Through Nanoelectronics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-68609-7_1

Download citation

Publish with us

Policies and ethics