Advertisement

Towards Monitoring Marijuana Activities via User-Generated Content Platforms and Social Networks

  • Anh Nguyen
  • Hoang Pham
  • Dong Nguyen
  • Tuan Tran
Chapter
Part of the Lecture Notes in Social Networks book series (LNSN)

Abstract

Marijuana has been legalized for medical and recreational use in many states across the U.S. Despite some medical benefits, over the past decade, researchers around the globe have documented the health risks associated with marijuana use in both youths and adults. Monitoring and understanding the related concerns and activities of marijuana use play key roles in preparing and making appropriate policies for public health regulations. However, accurately and efficiently obtaining such information is very challenging due to the unique characteristics of the relevant users, where related activities are usually hidden or undercovered. In this book chapter, we discuss new approaches to reveal the related information of marijuana use in the community by exploiting information exchanged or posted in social networks. We show that data mining approaches can be used to shed some light on the hidden patterns and related activities of marijuana use from information collected in social networks (e.g., Craigslist and Twitter). Our approaches can be utilized as a new way for public health regulators to efficiently monitor and surveil-related activities of marijuana use.

Keywords

Marijuana use Attitudes and health effects Marijuana surveillance Online communities Social media Online behavior monitoring  

References

  1. 1.
    Abuse, S.: Mental Health Services Administration (2014) Results from the 2013 national survey on drug use and health (2014)Google Scholar
  2. 2.
    Volkow, N.D., Baler, R.D., Compton, W.M., Weiss, S.R.: Adverse health effects of marijuana use. N. Engl. J. Med. 370(23), 2219–2227 (2014)CrossRefGoogle Scholar
  3. 3.
    Hall, W., Degenhardt, L.: The adverse health effects of chronic cannabis use. Drug Testing Anal 6(1–2), 39–45 (2014)CrossRefGoogle Scholar
  4. 4.
    Greydanus, D.E., Hawver, E.K., Greydanus, M.M.: 8 marijuana: current concepts and conundrums. In: Substance Abuse in Adolescents and Young Adults: A Manual for Pediatric and Primary Care Clinicians (2013)Google Scholar
  5. 5.
    Blanco, C., Hasin, D.S., Wall, M.M., Flórez-Salamanca, L., Hoertel, N., Wang, S., Kerridge, B.T., Olfson, M.: Cannabis use and risk of psychiatric disorders: prospective evidence from a US national longitudinal study. JAMA Psychiatry 73(4), 388–395 (2016)CrossRefGoogle Scholar
  6. 6.
    Batalla, A., Bhattachayyria, S., Yucel, M., Fusar-Poli, P., Crippa, J.A., Nogué, S., Torrens, M., Pujol, J., Farré, M., Martín-Santos, R.: Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings. Euro Psychiatry 28, 1 (2013)CrossRefGoogle Scholar
  7. 7.
    Hartman, R.L., Huestis, M.A.: Cannabis effects on driving skills. Clin. Chem. 59(3), 478–492 (2013)CrossRefGoogle Scholar
  8. 8.
    Dredze, M.: How social media will change public health. IEEE Intell. Syst. 27(4), 81–84 (2012)CrossRefGoogle Scholar
  9. 9.
    Paul, M., Dredze, M., Broniatowski, D., Generous, N.: Worldwide influenza surveillance through twitter. In: Shaban-Nejad, A., Buckeridge, D.L., Brownstein, J.S. (eds.) Proceedings of AAAI Workshop on the World Wide Web and Public Health Intelligence (2015)Google Scholar
  10. 10.
    Macleod, J., Oakes, R., Copello, A., Crome, I., Egger, M., Hickman, M., Oppenkowski, T., Stokes-Lampard, H., Smith, G.D.: Psychological and social sequelae of cannabis and other illicit drug use by young people: a systematic review of longitudinal, general population studies. The Lancet 363(9421), 1579–1588 (2004)CrossRefGoogle Scholar
  11. 11.
    Azofeifa, A., Mattson, M.E., Schauer, G., McAfee, T., Grant, A., Lyerla, R.: National estimates of marijuana use and related indicators—national survey on drug use and health, United States, 2002-2014. MMWR. Surveill Summ, 1–25 (2016)Google Scholar
  12. 12.
    Isaac, M., Ember, S.: For election day influence, twitter ruled social media (2016)Google Scholar
  13. 13.
    Carneiro, H.A., Mylonakis, E.: Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin. Infect. Dis. 1557–1564 (2009)Google Scholar
  14. 14.
    Aramaki, E., Maskawa, S., Morita, M.: Twitter catches the flu: detecting influenza epidemics using Twitter. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (2011)Google Scholar
  15. 15.
    Lamb, M., Paul, J., Dredze, M.: Separating fact from fear: tracking flu infections on Twitter. In: HLT-NAACL (2013)Google Scholar
  16. 16.
    Smith, M., Broniatowski, D.A., Paul, M.J., Dredze, M.: Towards real-time measurement of public epidemic awareness: monitoring influenza awareness through twitter (2015)Google Scholar
  17. 17.
    Santillana, M., Nguyen, A.T., Dredze, M., Paul, M.J., Nsoesie, E.O., Brownstein, J.S.: Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput. Biol. 11(10), e1004513 (2015)CrossRefGoogle Scholar
  18. 18.
    Abbar, S., Mejova, Y., Weber, I.: You tweet what you eat: studying food consumption through twitter. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (2015)Google Scholar
  19. 19.
    Bosley, J.C., Zhao, N.W., Hill, S., Shofer, F.S., Asch, D.A., Becker, L.B., Merchant, R.M.: Decoding twitter: surveillance and trends for cardiac arrest and resuscitation communication. Resuscitation 84(2), 206–212 (2013)CrossRefGoogle Scholar
  20. 20.
    Myslín, M., Zhu, S.-H., Chapman, W., Conway, M.: Using twitter to examine smoking behavior and perceptions of emerging tobacco products. J. Med. Internet Res. 15(8), e174 (2013)CrossRefGoogle Scholar
  21. 21.
    Prochaska, J.J., Pechmann, C., Kim, R., Leonhardt, J.M.: Twitter = quitter? An analysis of Twitter quit smoking social networks. Tobacco Control 21(4), 447–449 (2012)CrossRefGoogle Scholar
  22. 22.
    Nicholls, J.: Everyday, everywhere: alcohol marketing and social media—current trends. Alcohol. Alcohol. 47(4), 486–493 (2012)CrossRefGoogle Scholar
  23. 23.
    Winpenny, E.M., Marteau, T.M., Nolte, E.: Exposure of children and adolescents to alcohol marketing on social media websites. Alcohol. Alcohol. 49(2), 154–159 (2014)CrossRefGoogle Scholar
  24. 24.
    Cavazos-Rehg, P.A., Krauss, M., Fisher, S.L., Salyer, P., Grucza, R.A., Bierut, L.J.: Twitter chatter about marijuana. J. Adolesc. Health 56(2), 139–145 (2015) Google Scholar
  25. 25.
    Cavazos-Rehg, P.A., Krauss, M.J., Sowles, S.J., Bierut, L.J.: Marijuana-related posts on Instagram. Prev. Sci. 17(6), 710–720 (2016)CrossRefGoogle Scholar
  26. 26.
    Daniulaityte, R., Nahhas, R.W., Wijeratne, S., Carlson, R.G., Lamy, F.R., Martins, S.S., Boyer, E.W., Smith, G.A., Sheth, A.: “Time for dabs”: analyzing Twitter data on marijuana concentrates across the U.S. Drug Alcohol Depend. 155, 307–311 (2015)CrossRefGoogle Scholar
  27. 27.
    Gilbert, B.: 4 states just voted to make marijuana completely legal—here’s what we know (2016)Google Scholar
  28. 28.
    Berke, J.: Here’s where Donald Trump and Hillary Clinton stand on marijuana legalization (2016)Google Scholar
  29. 29.
    Kypri, K., Davie, G., McElduff, P., Connor, J., Langley, J., Wang, H., Hovy, E., Dredze, M.: Effects of lowering the minimum alcohol purchasing age on weekend assaults resulting in hospitalization in New Zealand. Am. J. Public Health 104(8), 1396–1401 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anh Nguyen
    • 1
  • Hoang Pham
    • 3
  • Dong Nguyen
    • 1
  • Tuan Tran
    • 2
  1. 1.Saolasoft Inc.CentennialUSA
  2. 2.Sullivan UniversityLouisvilleUSA
  3. 3.PiscatawayUSA

Personalised recommendations