Adaptively Learning Levels of Coordination from One’s, Other’s and Task Related Errors Through a Cerebellar Circuit: A Dual Cart-Pole Setup

  • Martí Sánchez-FiblaEmail author
  • Giovanni Maffei
  • Paul F. M. J. Verschure
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10613)


Behavioral and theoretical studies have shown that during joint action in an interpersonal skilled activity, like carrying an object collaboratively, anticipation is required to further improve the precision in the realization of the task. We model this task as a dual cart pole setup, and we provide a computational basis of how this anticipation can be realized at different levels: anticipating errors originating from the agent’s body control, errors related to the global task and errors derived from the anticipation of the other’s actions. We model computationally the control loops of the agents as an interplay of feedback and feedforward components and we base the latter on previous research on the cerebellar circuit network. Our results confirm experimentally that anticipating the error in the task including inputs extracted from the behavior of the other, further improves precision in the realization.


Social sensorimotor contingencies Anticipation Cerebellar circuit Forward/Feedback control Dual cart pole setup 



This work was supported by socSMC-641321H2020-FETPROACT-2014, INSOCO-DPI2016-80116-P and ERC-2013-ADG-341196.


  1. 1.
    Dean, P., Porrill, J., Ekerot, C.F., Jörntell, H.: The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat. Rev. Neurosci. 11(1), 30–43 (2010)CrossRefGoogle Scholar
  2. 2.
    Di Paolo, E.A., Rohde, M., Iizuka, H.: Sensitivity to social contingency or stability of interaction? Modelling the dynamics of perceptual crossing. New Ideas Psychol. 26(2), 278–294 (2008)CrossRefGoogle Scholar
  3. 3.
    Herreros, I., Arsiwalla, X., Verschure, P.: A forward model at Purkinje cell synapses facilitates cerebellar anticipatory control. In: Advances in Neural Information Processing Systems, pp. 3828–3836 (2016)Google Scholar
  4. 4.
    Herreros, I., Verschure, P.F.: Nucleo-olivary inhibition balances the interaction between the reactive and adaptive layers in motor control. Neural Netw. 47, 64–71 (2013)CrossRefGoogle Scholar
  5. 5.
    Keller, P.E., Novembre, G., Hove, M.J.: Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination. Phil. Trans. R. Soc. B 369(1658) (2014)Google Scholar
  6. 6.
    Moulin-Frier, C., Sanchez-Fibla, M., Verschure, P.F.: Autonomous development of turn-taking behaviors in agent populations: a computational study. In: 2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 188–195. IEEE (2015)Google Scholar
  7. 7.
    Pezzulo, G., Iodice, P., Donnarumma, F., Dindo, H., Knoblich, G.: Avoiding accidents at the champagne reception. Psychol. Sci., 095679761668301 (2017). doi: 10.1177/0956797616683015
  8. 8.
    Schmitz, C., Martineau, J., Barthélémy, C., Assaiante, C.: Motor control and children with autism: deficit of anticipatory function? Neurosci. Lett. 348(1), 17–20 (2003)CrossRefGoogle Scholar
  9. 9.
    Sebanz, N., Bekkering, H., Knoblich, G.: Joint action: bodies and minds moving together. Trends Cogn. Sci. 10(2), 70–76 (2006)CrossRefGoogle Scholar
  10. 10.
    Stins, J.F., Emck, C., de Vries, E.M., Doop, S., Beek, P.J.: Attentional and sensory contributions to postural sway in children with autism spectrum disorder. Gait Posture 42(2), 199–203 (2015)CrossRefGoogle Scholar
  11. 11.
    Sukhbaatar, S., Szlam, A., Fergus, R.: Learning multiagent communication with backpropagation. arXiv preprint arXiv:1605.07736 (2016)
  12. 12.
    Vesper, C., Butterfill, S., Knoblich, G., Sebanz, N.: A minimal architecture for joint action. Neural Netw. 23(8), 998–1003 (2010)CrossRefGoogle Scholar
  13. 13.
    Wei, K., Körding, K.: Relevance of error: what drives motor adaptation? J. Neurophysiol. 101(2), 655–664 (2009)CrossRefGoogle Scholar
  14. 14.
    Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philos. Trans. R. Soc. B Biol. Sci. 358(1431), 593–602 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Martí Sánchez-Fibla
    • 1
    Email author
  • Giovanni Maffei
    • 1
  • Paul F. M. J. Verschure
    • 1
  1. 1.SPECS, Technology DepartmentUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations