Aeroecology pp 401-425 | Cite as

The Pulse of the Planet: Measuring and Interpreting Phenology of Avian Migration

  • Jeffrey F. Kelly
  • Kyle G. Horton
  • Phillip M. Stepanian
  • Kirsten de Beurs
  • Sandra Pletschet
  • Todd Fagin
  • Eli S. Bridge
  • Phillip B. Chilson


Changing phenology of bird migration has become a flagship example of the biological impacts of climate change. Bird migration phenology data come from a limited number of time series in idiosyncratic locations. Improved understanding of these relationships requires new data collected in a standardized method that spans spatial and temporal scales. We used weather surveillance radar data and eBird data to show that it is feasible to measure bird migration phenology from local to regional scales and that these data provide geographically informative and temporally consistent patterns of migration phenology. We examine both a single species (Purple Martin) case and widespread nocturnal songbird migration. We also analyzed patterns in potential environmental cues that migrants might use to adjust their phenology en route. These analyses suggest that temperature does form a thermal wave that is a plausible cue for adjusting migration timing, but that the Normalized Difference Vegetation Index (NDVI) as a measure of the start-of-spring does not produce a green wave that would be informative to migrants for gauging seasonal phenology. This result calls into question the use of vegetation indices to understand how migrants adjust their timing en route.


  1. Ahas R (1999) Long-term phyto-, ornitho-and ichthyophenological time-series analyses in Estonia. Int J Biometeorol 42:119–123CrossRefGoogle Scholar
  2. Alerstam T, Hedenstrom A, Akesson S (2003) Long distance migration: evolution and determinants. Oikos 103:247–260CrossRefGoogle Scholar
  3. Bauer S, Gienapp P, Madsen J (2008) The relevance of environmental conditions for departure decision changes en route in migrating geese. Ecology 89:1953–1960CrossRefPubMedGoogle Scholar
  4. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bennett PM, Owens IP (2002) Evolutionary ecology of birds: life histories, mating systems, and extinction. Oxford University Press, OxfordGoogle Scholar
  6. Bischof R, Loe LE, Meisingset EL, Zimmermann B, Van Moorter B, Mysterud A (2012) A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am Nat 180:407–424CrossRefPubMedGoogle Scholar
  7. Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411:296–298CrossRefPubMedGoogle Scholar
  8. Both C, Bouwhuis S, Lessells C, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83CrossRefPubMedGoogle Scholar
  9. Bridge E, Kelly J, Bjornen P, Curry C, Crawford P, Paritte J (2010) Effects of nutritional condition on spring migration: do migrants use resource availability to keep pace with a changing world? J Exp Biol 213:2424–2429CrossRefPubMedGoogle Scholar
  10. Bridge ES, Pletschet SM, Fagin T, Chilson PB, Horton KG, Broadfoot KR, Kelly JF (2016) Persistence and habitat associations of Purple Martin roosts quantified via weather surveillance radar. Landsc Ecol 31:43–53CrossRefGoogle Scholar
  11. Bridge ES, Pletschet SM, Fagin T, Chilson PB, Horton KG, Broadfoot KR, Kelly JF (2017) Continental distribution and persistence of purple martin roosts quantified via weather surveillance radar (in review)Google Scholar
  12. Buler J, Dawson D (2014) Radar analysis of fall bird migration stopover sites in the northeastern U.S. Condor 116:357–370CrossRefGoogle Scholar
  13. Buler JJ, Moore FR (2011) Migrant – habitat relations during stopover along an ecological barrier: extrinsic constraints and conservation implications. J Ornithol 152(S1):101–112CrossRefGoogle Scholar
  14. Buler JJ, Randall L, Fleskes JP, Barrow W Jr, Bogart T, Kluver D (2012) Mapping wintering waterfowl distributions using weather surveillance radar. PLoS One 7(7):e41571CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chilson P, Frick W, Kelly J, Howard K, Larkin R, Diehl R, Westbrook J, Kelly T, Kunz T (2011) Partly cloudy with a chance of migration: weather, radars, and aeroecology. Bull Am Meteorol Soc.
  16. Cohen EB, Moore FR, Fischer RA (2012) Experimental evidence for the interplay of exogenous and endogenous factors on the movement ecology of a migrating songbird. PLoS One 7:e41818CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cohen EB, Németh Z, Zenzal TJ Jr, Paxton KL, Diehl R, Paxton EH, Moore FR (2015) Spring resource phenology and timing of songbird migration across the Gulf of Mexico. In: Wood EM, Kellermann JL (eds) Phenological synchrony and bird migration: changing climate and seasonal resources in North America, vol 47. CRC Press, Boca Raton, p 63Google Scholar
  18. Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci 100:12219–12222CrossRefPubMedPubMedCentralGoogle Scholar
  19. Diehl RH, Larkin RP, Black JE (2003) Radar observations of bird migration over the great lakes. Auk 120:278–290CrossRefGoogle Scholar
  20. DiGaudio R, Humple D, Geupel G (2008) Patterns of avian migration in California: an analysis and comparison of results from NEXRAD doppler weather radar and multiple mist-net stations. DTIC DocumentGoogle Scholar
  21. Dingle H (2014) Migration: the biology of life on the move. Oxford University Press, OxfordCrossRefGoogle Scholar
  22. Dokter AM, Liechti F, Stark H, Delobbe L, Tabary P, Holleman I (2010) Bird migration flight altitudes studied by a network of operational weather radars J R Soc Interface.
  23. Drent R, Ebbinge B, Weijand B (1978) Balancing the energy budgets of arctic-breeding geese throughout the annual cycle: a progress report. Verh Ornithol Ges Bayern 23:239–264Google Scholar
  24. Dunn PO, Winkler DW (1999) Climate change has affected the breeding date of tree swallows throughout North America. Proc R Soc Lond Ser B Biol Sci 266:2487–2490CrossRefGoogle Scholar
  25. Dunn PO, Winkler DW, Whittingham LA, Hannon SJ, Robertson RJ (2011) A test of the mismatch hypothesis: How is timing of reproduction related to food abundance in an aerial insectivore? Ecology 92:450–461CrossRefPubMedGoogle Scholar
  26. Emmenegger T, Hahn S, Bauer S (2014) Individual migration timing of common nightingales is tuned with vegetation and prey phenology at breeding sites. BMC Ecol 14:9CrossRefPubMedPubMedCentralGoogle Scholar
  27. Farnsworth A, Van Doren BM, Hochachka WM, Sheldon D, Winner K, Irvine J, Geevarghese J, Kelling S (2016) A characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern USA. Ecol Appl 26(3):752–770CrossRefPubMedGoogle Scholar
  28. Faaborg J, Holmes RT, Anders AD, Bildstein KL, Dugger KM, Gauthreaux SA Jr, Heglund P, Hobson KA, Jahn AE, Johnson DH (2010) Conserving migratory land birds in the New World: do we know enough? Ecol Appl 20:398–418CrossRefPubMedGoogle Scholar
  29. Fischer RA, Gauthreaux SA, Valente JJ, Guilfoyle MP, Kaller MD (2012a) Comparing transect survey and WSR-88D radar methods for monitoring daily changes in stopover migrant communities. J Field Ornithol 83:61–72CrossRefGoogle Scholar
  30. Fischer RA, Guilfoyle MP, Valente J, Gauthreaux SA Jr, Belser CG, Blaricom JW, Donald V, Cohen E, Moore FR (2012b) The identification of military installations as important migratory bird stopover sites and the development of bird migration forecast models: a radar ornithology approach. DTIC DocumentGoogle Scholar
  31. Frick WF, Stepanian PM, Kelly JF, Howard KW, Kuster CM, Kunz TH, Chilson PB (2012) Climate and weather impact timing of emergence in bats. PLoS One 7:e42737CrossRefPubMedPubMedCentralGoogle Scholar
  32. Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302CrossRefGoogle Scholar
  33. Gauthreaux SA (1970) Weather radar quantification of bird migration. Bioscience 20:17–19CrossRefGoogle Scholar
  34. Gauthreaux SA Jr (2006) Bird migration: methodologies and major research trajectories (1945–1995). Condor 98:442–453CrossRefGoogle Scholar
  35. Gauthreaux SA Jr, Belser CG (2003) Radar ornithology and biological conservation. Auk 120:266–277CrossRefGoogle Scholar
  36. Gauthreaux SA, Livingston JW, Belser CG (2008) Detection and discrimination of fauna in the aerosphere using Doppler weather surveillance radar. Integr Comp Biol 48:12–23CrossRefPubMedGoogle Scholar
  37. Ge Q, Wang H, Dai J (2015) Phenological response to climate change in China: a meta-analysis. Glob Chang Biol 21:265–274CrossRefPubMedGoogle Scholar
  38. Horton KG, Shriver WG, Buler JJ (2015) A comparison of traffic estimates of nocturnal flying animals using radar, thermal imaging, and acoustic recording. Ecol Appl 25(2):390–401CrossRefPubMedGoogle Scholar
  39. Horton KG, Van Doren BM, Stepanian PM, Hochachka WM, Farnsworth A, Kelly JF (2016a) Nocturnally migrating songbirds drift when they can and compensate when they must. Sci Rep 6:21249CrossRefPubMedPubMedCentralGoogle Scholar
  40. Horton KG, Van Doren BM, Stepanian PM, Farnsworth A, Kelly JF (2016b) Seasonal differences in landbird migration strategies. Auk 133(4):761–769CrossRefGoogle Scholar
  41. Ibáñez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, Kobori H, Silander JA (2010) Forecasting phenology under global warming. Philos Trans R Soc B Sci 365:3247–3260CrossRefGoogle Scholar
  42. Jetz W, McPerson JM, Guralnick RP (2012) Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol Evol 27:151–159CrossRefPubMedGoogle Scholar
  43. Jonzen N, Linden A, Ergon T, Knudsen E, Vik JO, Rubolini D, Piacentini D, Brinch C, Spina F, Karlsson L, Stervander M, Andersson A, Waldenstrom J, Lehikoinen A, Edvardsen E, Solvang R, Stenseth NC (2006) Rapid advance of spring arrival dates in long-distance migratory birds. Science 312:1959–1961CrossRefPubMedGoogle Scholar
  44. Kelly JF, Horton KG (2016) Toward a predictive macrosystems framework for migration ecology. Glob Ecol Biogeogr.
  45. Kelly JF, Horton KG, Stepanian PM, Beurs KM, Fagin T, Bridge ES, Chilson PB (2016) Novel measures of continental-scale avian migration phenology related to proximate environmental cues. Ecosphere 7(8):e01434CrossRefGoogle Scholar
  46. Kelly JF, Pletschet SM (2017) Accuracy of swallow roost locations assigned using weather surveillance radar. Remote Sens Ecol ConservGoogle Scholar
  47. Kelly J, Shipley J, Chilson P, Howard K, Frick W, Kunz T (2012) Quantifying animal phenology in the aerosphere at a continental scale using NEXRAD weather radars. Ecosphere 3(2):16CrossRefGoogle Scholar
  48. La Sorte FA, Fink D, Hochachka WM, DeLong JP, Kelling S (2013) Population-level scaling of avian migration speed with body size and migration distance for powered fliers. Ecology 94:1839–1847CrossRefPubMedGoogle Scholar
  49. La Sorte FA, Fink D, Hochachka WM, DeLong JP, Kelling S (2014) Spring phenology of ecological productivity contributes to the use of looped migration strategies by birds. Proc R Soc B 281(1793):20140984. The Royal SocietyCrossRefPubMedPubMedCentralGoogle Scholar
  50. Laughlin AJ, Taylor CM, Bradley DW, Leclair D, Clark RC, Dawson RD, Dunn PO, Horn A, Leonard M, Sheldon DR (2013) Integrating information from geolocators, weather radar, and citizen science to uncover a key stopover area of an aerial insectivore. Auk 130:230–239CrossRefGoogle Scholar
  51. Laughlin AJ, Sheldon DR, Winkler DW, Taylor CM (2014) Behavioral drivers of communal roosting in a songbird: a combined theoretical and empirical approach. Behav Ecol 25(4):734–743CrossRefGoogle Scholar
  52. Lehikoinen E, Sparks TH (2010) Changes in migration. In: Møller A, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 89–112Google Scholar
  53. Lehikoinen E, Sparks TH, Zalakevicius M (2004) Arrival and departure dates. Adv Ecol Res 35:1–31CrossRefGoogle Scholar
  54. Liechti F, Bruderer B, Paproth H (1995) Quantification of nocturnal bird migration by moonwatching: comparison with radar and infrared observations (cuantificación de la migración nocturna de aves observando la luna: comparación con observaciones de radar e intrarrojas). J Field Ornithol 66:457–468Google Scholar
  55. Lowery GH, Newman RJ (1966) A continentwide view of bird migration on four nights in october. Auk 83:547–586CrossRefGoogle Scholar
  56. Marra PP, Francis CM, Mulvihill RS, Moore FR (2005) The influence of climate on the timing and rate of spring bird migration. Oecologia 142:307–315CrossRefPubMedGoogle Scholar
  57. Menzel A, Jakobi G, Ahas R, Scheifinger H, Estrella N (2003) Variations of the climatological growing season (1951–2000) in Germany compared with other countries. Int J Climatol 23:793–812CrossRefGoogle Scholar
  58. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976CrossRefGoogle Scholar
  59. Miller-Rushing AJ, Høye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. Philos Trans R Soc B 365:3177–3186CrossRefGoogle Scholar
  60. Nisbet I (1963) Measurements with radar of the height of nocturnal migration over Cape Cod, Massachusetts. Bird-Banding 34:57–67CrossRefGoogle Scholar
  61. Park HS, Ryzhkov A, Zrnic D, Kim K-E (2009) The hydrometeor classification algorithm for the polarimetric WSR-88D: description and application to an MCS. Weather Forecast 24:730–748CrossRefGoogle Scholar
  62. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  63. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13:1860–1872CrossRefGoogle Scholar
  64. Paxton KL, Cohen EB, Paxton EH, Németh Z, Moore FR (2014) El nino-southern oscillation is linked to decreased energetic condition in long-distance migrants. PLoS One 9:e95383CrossRefPubMedPubMedCentralGoogle Scholar
  65. Peckford ML, Taylor PD (2008) Within night correlations between radar and ground counts of migrating songbirds. J Field Ornithol 79:207–214CrossRefGoogle Scholar
  66. Post E, Forchhammer MC (2008) Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos Trans R Soc Lond B: Biol Sci 363:2367–2373CrossRefGoogle Scholar
  67. Post E, Stenseth NC (1999) Climatic variability, plant phenology, and northern ungulates. Ecology 80:1322–1339CrossRefGoogle Scholar
  68. R. Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna.
  69. Ramenofsky M, Wingfield JC (2007) Regulation of migration. Bioscience 57:135–143CrossRefGoogle Scholar
  70. Randall LA, Diehl RH, Wilson BC, Barrow WC, Jeske CW (2011) Potential use of weather radar to study movements of wintering waterfowl. J Wildl Manag 75:1324–1329CrossRefGoogle Scholar
  71. Renfrew RB, Kim D, Perlut N, Smith J, Fox J, Marra PP (2013) Phenological matching across hemispheres in a long-distance migratory bird. Divers Distrib 19:1008–1019CrossRefGoogle Scholar
  72. Robinson RA, Crick HQ, Learmonth JA, Maclean I, Thomas CD, Bairlein F, Forchhammer MC, Francis CM, Gill JA, Godley BJ (2009) Travelling through a warming world: climate change and migratory species. Endanger Species Res 7:87–99CrossRefGoogle Scholar
  73. Root TI, Hughes L (2005) Present and future phenological changes in wild plants and animals. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven, pp 61–69Google Scholar
  74. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefPubMedGoogle Scholar
  75. Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu QG, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu CZ, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–358CrossRefPubMedGoogle Scholar
  76. Runge CA, Martin TG, Possingham HP, Willis SG, Fuller RA (2014) Conserving mobile species. Front Ecol Environ 12:395–402CrossRefGoogle Scholar
  77. Russell KR, Gauthreaux SA (1998) Use of weather radar to characterize movements of roosting purple martins. Wildl Soc Bull 26:5–16Google Scholar
  78. Russell KR, Gauthreaux SA Jr (1999) Spatial and temporal dynamics of a purple martin pre-migratory roost. Wilson Bull 111:354–362Google Scholar
  79. Russell KR, Mizrahi DS, Gauthreaux SA (1998) Large-scale mapping of purple martin pre-migratory roosts using WSR-88D weather surveillance radar. J Field Ornithol 69:509–509Google Scholar
  80. Saino N, Ambrosini R, Rubolini D, von Hardenberg J, Provenzale A, Hüppop K, Hüppop O, Lehikoinen A, Lehikoinen E, Rainio K (2011) Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc Biol Sci 278(1707):835–842. CrossRefPubMedGoogle Scholar
  81. Sauer J, Hines J, Fallon J, Pardieck K, Ziolkowski D Jr, Link W (2012) The North American breeding bird survey, results and analysis 1966–2011. Accessed 12 Dec 2011
  82. Schmaljohann H, Liechti F, Bachler E, Steuri T, Bruderer B (2008) Quantification of bird migration by radar – a detection probability problem. Ibis 150:342–355CrossRefGoogle Scholar
  83. Schwartz MD (1998) Green-wave phenology. Nature 394:839–840CrossRefGoogle Scholar
  84. Schwartz MD, Ault TR, Betancourt JL (2013) Spring onset variations and trends in the continental United States: past and regional assessment using temperature-based indices. Int J Climatol 33(13):2917–2922CrossRefGoogle Scholar
  85. Shamoun-Baranes J, Alves J, Bauer S, Dokter A, Koistinen J, Leijnse H, Liechti F, van Gasteren H (2014) Continental-scale radar monitoring of the aerial movements of animals. Mov Ecol 2(1):9CrossRefGoogle Scholar
  86. Shariatinajafabadi M, Wang T, Skidmore AK, Toxopeus AG, Kölzsch A, Nolet BA, Exo K-M, Griffin L, Stahl J, Cabot D (2014) Migratory herbivorous waterfowl track satellite-derived green wave index. PLoS One 9:e108331CrossRefPubMedPubMedCentralGoogle Scholar
  87. Si Y, Xin Q, de Boer WF, Gong P, Ydenberg RC, Prins HH (2015) Do arctic breeding geese track or overtake a green wave during spring migration? Sci Rep 5:8749CrossRefPubMedPubMedCentralGoogle Scholar
  88. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge, p 996Google Scholar
  89. Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis of the marsham phenological record, 1736–1947. J Ecol 83:321–329CrossRefGoogle Scholar
  90. Sparks T, Jeffree E, Jeffree C (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87CrossRefPubMedGoogle Scholar
  91. Sullivan BL, Aycrigg JL, Barry JH, Bonney RE, Bruns N, Cooper CB, Damoulas T, Dhondt AA, Dietterich T, Farnsworth A (2014) The eBird enterprise: an integrated approach to development and application of citizen science. Biol Conserv 169:31–40CrossRefGoogle Scholar
  92. Socolar JB, Epanchin PN, Beissinger SR, Tingley MW (2017) Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc Natl Acad Sci USA 114(49):12976–12981CrossRefPubMedGoogle Scholar
  93. Thompson K, Gilbert F (2014) Phenological synchrony between a plant and a specialised herbivore. Basic Appl Ecol 15:353–361CrossRefGoogle Scholar
  94. Thorup K, Tottrup AP, Rahbek C (2007) Patterns of phenological changes in migratory birds. Oecologia 151:697–703CrossRefPubMedGoogle Scholar
  95. Tottrup AP, Thorup K, Rahbek C (2006) Patterns of change in timing of spring migration in North European songbird populations. J Avian Biol 37:84–92CrossRefGoogle Scholar
  96. Tottrup AP, Rainio K, Coppack T, Lehikoinen A, Rahbek C, Thorup K (2010) Local temperature fine-tunes the timing of spring migration in birds. Integr Comp Biol 50:293–304CrossRefPubMedGoogle Scholar
  97. Tøttrup AP, Klaassen RH, Strandberg R, Thorup K, Kristensen MW, Jørgensen PS, Fox J, Afanasyev V, Rahbek C, Alerstam T (2012) The annual cycle of a trans-equatorial Eurasian–African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc R Soc B Biol Sci 279(1730):1008–1016CrossRefGoogle Scholar
  98. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150CrossRefGoogle Scholar
  99. Thorup K, Tøttrup AP, Willemoes M, Klaassen RH, Strandberg R, Vega ML, Dasari HP, Araújo MB, Wikelski M, Rahbek C (2017) Resource tracking within and across continents in longdistance bird migrants. Sci Adv 3(1):e1601360CrossRefPubMedPubMedCentralGoogle Scholar
  100. Van Buskirk J, Mulvihill RS, Leberman RC (2009) Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Glob Chang Biol 15:760–771CrossRefGoogle Scholar
  101. Visser ME, Gienapp P, Husby A, Morrisey M, de la Hera I, Pulido F, Both C (2015) Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. PLoS Biol 13:e1002120CrossRefPubMedPubMedCentralGoogle Scholar
  102. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  103. Wang T, Skidmore AK, Zeng Z, Beck PS, Si Y, Song Y, Liu X, Prins HH (2010) Migration patterns of two endangered sympatric species from a remote sensing perspective. Photogramm Eng Remote Sens 76:1343–1352CrossRefGoogle Scholar
  104. White MA, Hoffman F, Hargrove WW, Nemani RR (2005) A global framework for monitoring phenological responses to climate change. Geophys Res Lett 32:L04705Google Scholar
  105. White MA, Beurs D, Kirsten M, Didan K, Inouye DW, Richardson AD, Jensen OP, O’Keefe J, Zhang G, Nemani RR (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob Chang Biol 15:2335–2359CrossRefGoogle Scholar
  106. Williams TC, Marsden JE, Lloyd-Evans TL, Krauthamer V (1981) Spring migration studied by mist-netting, ceilometer, and radar. J Field Ornithol 52:177–190Google Scholar
  107. Williams AA, Laird NF (2017) Weather and eared grebe winter migration near the Great Salt Lake, Utah. Int J Biometeorol:1–15Google Scholar
  108. Zhang J, Howard KW, Langston C, Vasiloff SV, Kaney B, Aurthur A, Van Cooten S, Kelleher KE, Kitzmiller DH, Ding F, Seo D-J, Wells E, Dempsey C (2011) National mosaic and multi-sensor QPE (NMQ) system – description, results and future plans. Bull Amer Meteor Soc 92:1321–1338. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Jeffrey F. Kelly
    • 1
  • Kyle G. Horton
    • 2
  • Phillip M. Stepanian
    • 3
  • Kirsten de Beurs
    • 4
  • Sandra Pletschet
    • 5
  • Todd Fagin
    • 5
  • Eli S. Bridge
    • 5
  • Phillip B. Chilson
    • 6
  1. 1.Oklahoma Biological Survey and Department of BiologyUniversity of OklahomaNormanUSA
  2. 2.Oklahoma Biological Survey, Department of Biology, and Advanced Radar Research CenterUniversity of OklahomaNormanUSA
  3. 3.School of Meteorology and Advanced Radar Research CenterUniversity of OklahomaNormanUSA
  4. 4.Department of Geography and Environmental SustainabilityUniversity of OklahomaNormanUSA
  5. 5.Oklahoma Biological SurveyUniversity of OklahomaNormanUSA
  6. 6.School of Meteorology, Advanced Radar Research Center, and Center for Autonomous Sensing and SamplingUniversity of OklahomaNormanUSA

Personalised recommendations