Skip to main content

Using Agent-Based Models to Scale from Individuals to Populations

  • Chapter
  • First Online:
Aeroecology

Abstract

All aggregate biological phenomena in the aerosphere are due to the behaviors of unique individuals acting according to their own rules of behavior and perceived external stimuli. An appealing characteristic of aeroecology is that we can observe both these aggregate behaviors of large groups (using tools such as radar and observational networks) as well as the behavior of individual animals (by employing animal tracking technology). Traditional population modeling efforts focus on equations that mimic natural populations in terms of overall population size and/or mean population parameters, often discounting mechanisms operating on the individual level that give rise to overall population dynamics. Concurrent advancements in computing capacity and animal tracking methodologies provide us with the opportunity to examine how the actions of individuals scale up to give rise to population-level phenomena in the aerosphere. More specifically, we can now model populations as a collection of individuals that behave independently, and we can validate the inferences from these agent-based models by tracking actual animals over the course of their annual cycle. In this chapter, we provide an example of how an agent-based model can be used to predict migration behavior across a species range based on a small set of actual migration tracks. The example provides a generalizable framework for using agent-based models as a link between data from individuals and broad-scale phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Botkin DB, Wallis JR, Janak JF (1972) Some ecological consequences of a computer model of forest growth. J Ecol 60:849–873

    Article  Google Scholar 

  • Bridge ES et al (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698

    Article  Google Scholar 

  • Bridge ES, Ross JD, Contina AJ, Kelly JF (2016) Do molt-migrant songbirds optimize migration routes based on primary productivity? Anim Behav 27:784–792

    Google Scholar 

  • Contina A, Bridge ES, Seavy NE, Duckles J, Kelly JF (2013) Using geologgers to investigate bimodal isotope patterns in painted buntings. Auk 130:265–272

    Article  Google Scholar 

  • Coss-Custard JD, Stillman RA (2008) Individual-based models and the management of shorebird populations. Nat Resour Model 21:3–71

    Article  Google Scholar 

  • DeAngelis DL, Grimm V (2014) Individual-based models in ecology after four decades. F1000Prime Rep 6:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennhardt AJ, Duerr AE, Brandes D, Katzner TE (2015) Modeling autumn migration of a rare soaring raptor identifies new movement corridors in central appalachia. Ecol Model 303:19–29

    Article  Google Scholar 

  • eBird (2012) eBird: an online database of bird distribution and abundance [web application]. eBird, Ithaca. http://www.ebird.org. Accessed 23 June 2015

  • Erni B, Liechti F, Bruderer B (2003) How does a first year passerine migrant find its way? Simulating migration mechanisms and behavioural adaptations. Oikos 103:333–340

    Article  Google Scholar 

  • ESRI (2010) Agent analyst: agent based modeling extension for arcgis users. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • ESRI (2011) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Fortmann-Roe S (2014) Insight maker: a general-purpose tool for web-based modeling & simulation. Simul Model Pract Theory 47:28–45

    Article  Google Scholar 

  • Fraser KC et al (2013) Consistent range-wide pattern in fall migration strategy of purple martin (progne subis), despite different migration routes at the Gulf of Mexico. Auk 130:291–296

    Article  Google Scholar 

  • Haig SM et al (2011) Genetic applications in avian conservation. Auk 128:205–229

    Article  Google Scholar 

  • Hallworth MT, Sillett TS, Van Wilgenburg SL, Hobson KA, Marra PP (2015) Migratory connectivity of a Neotropical migratory songbird revealed using archival light-level geolocators. Ecol Appl 25:336–347

    Google Scholar 

  • Hicke JA, Lobell DB, Asner GP (2004) Cropland area and net primary production computed from 30 years of usda agricultural harvest data. Earth Interact 8(10):1–20

    Article  Google Scholar 

  • Jahn AE et al (2013) Migration timing and wintering areas of three species of flycatchers (tyrannus) breeding in the great plains of North America. Auk 130:247–257

    Article  Google Scholar 

  • Kanarek AR, Lamberson RH, Black JM (2008) An individual-based model for traditional foraging behavior: investigating effects of environmental fluctuation. Nat Resour Model 21:93–116

    Article  Google Scholar 

  • Kaul H, Ventikos Y (2015) Investigating biocomplexity through the agent-based paradigm. Brief Bioinform 16:137–152

    Article  PubMed  Google Scholar 

  • Kelly JF, Ruegg KC, Smith TB (2005) Combining isotopic and genetic markers to identify breeding origins of migrant birds. Ecol Appl 15:1487–1494

    Article  Google Scholar 

  • Kranstauber B, Weinzierl R, Wikelski M, Safi K (2015) Global aerial flyways allow efficient travelling. Ecol Lett 18:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Leu M, Thompson CW (2002) The potential importance of migratory stopover sites as flight feather molt staging areas: a review for neotropical migrants. Biol Conserv 106:45–56

    Article  Google Scholar 

  • Lowther PE, Lanyon SM, Thompson CW (1999) Painted bunting (Passerina ciris). In: Poole A, Gill F (eds) The birds of North America no. 398. The Birds of North America, Philadelphia, pp 1–28

    Google Scholar 

  • Marceau DJ (2008) What can be learned from multi-agent systems? In: Gimblett R (ed) Monitoring, simulation and management of visitor landscapes. University of Arizona Press, Tucson, pp 411–424

    Google Scholar 

  • North MJ, Collier NT, Ozik J, Tatara ER, Macal CM, Bragen M, Sydelko P (2013) Complex adaptive systems modeling with Repast Simphony. Complex Adapt Syst Model 1:1–26

    Article  Google Scholar 

  • Parrish JK, Viscido SV, Grunbaum D (2002) Self-organized fish schools: an examination of emergent properties. Biol Bull 202:296–305

    Article  PubMed  Google Scholar 

  • Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms: review and development recommendations. Simul Trans Soc Model Simul Int 82:609–623

    Google Scholar 

  • Rakhimberdiev E, Senner NR, Verhoeven MA, Winkler DW, Bouten W, Piersma T (2016) Comparing inferences of solar geolocation data against high-precision GPS data: annual movements of a double-tagged black-tailed godwit. J Avian Biol 47(4):589–596

    Article  Google Scholar 

  • Reynolds CW (1987) Flocks, herds, and schools: a distributed behavior model. Comput Graph 21:25–34

    Article  Google Scholar 

  • Rohwer S, Butler LK, Froehlich DR (2005) Ecology and demography of east-west differences in molt scheduling in neotropical migrant passerines. In: Greenberg R, Marra PP (eds) Birds of two worlds. Johns Hopkins University Press, Baltimore, pp 87–105

    Google Scholar 

  • Romanowska I (2014) How the python ate the turtle. Accessed 29 June 2015

    Google Scholar 

  • Ruegg KC, Anderson EC, Paxton KL, Apkenas V, Lao S, Siegel RB, Desante DF, Moore F, Smith TB (2014) Mapping migration in a songbird using high-resolution genetic markers. Mol Ecol 23:5726–5739

    Article  PubMed  Google Scholar 

  • Rushing CS, Ryder TB, Saracco JF, Marra PP (2014) Assessing migratory connectivity for a long-distance migratory bird using multiple intrinsic markers. Ecol Appl 24:445–456

    Article  PubMed  Google Scholar 

  • Stanley CQ et al (2014) Connectivity of wood thrush breeding, wintering, and migration sites based on range-wide tracking. Conserv Biol 29:164–174

    Article  PubMed  Google Scholar 

  • Stepanian PM (2015) Radar polarimetry for biological applications university of oklahoma. Norman, Oklahoma

    Google Scholar 

  • Sumner MD, Wotherspoon SJ, Hindell MA (2009) Bayesian estimation of animal movement from archival and satellite tags. PLoS One 4:7324

    Article  Google Scholar 

  • Sykes PW Jr, Holzman S, Inigo-Elias EE (2007) Current range of the eastern population of painted bunting (Passerina ciris) part II: winter range. North Am Birds 61:378–406

    Google Scholar 

  • Tesfatsion L (2002) Agent-based computational economics: growing economies from the bottom up. Artif Life 8:55–82

    Article  PubMed  Google Scholar 

  • Thompson CW (1991) The sequence of molts and plumages in painted buntings and implications for theories of delayed plumage maturation. Condor 93:209–235

    Article  Google Scholar 

  • Wang Z, Butner JD, Cristini V, Deisboeck TS (2015) Integrated PK-PD and agent-based modeling in oncology. J Pharmacokinet Pharmacodyn 42:179–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilensky U (1999) NetLogo. Center for connected learning and computer-based modeling, Northwestern University. Evanston. http://ccl.northwestern.edu/netlogo/

  • Wotherspoon S, Sumner M (2014) SGAT: Solar/satellite geolocation for animal tracking. https://github.com/SWotherspoon/SGAT

  • Yorke JA, Anderson WN (1973) Predator-prey patterns. Proc Natl Acad Sci USA 70:2069–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zvoleff A (2014) PyABM: an open source agent-based modeling toolkit. http://azvoleff.com/pyabm.html. Accessed 29 June 2015

  • Zvoleff A, Li A (2014) Analyzing human-landscape interactions: tools that integrate. Environ Manag 53:94–111

    Article  Google Scholar 

Download references

Acknowledgements

This reasearch was aided by support from the National Science Foundation (awards 1340921, 1152356, and 0946685) and from the United States Department of Agriculture National Institute for Food and Agriculture (award 2013-67009-20369). All authors belong to the Applied Aeroecology Group, a University Sponsored Organization at the University of Oklahoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli S. Bridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bridge, E.S., Ross, J.D., Contina, A.J., Kelly, J.F. (2017). Using Agent-Based Models to Scale from Individuals to Populations. In: Chilson, P., Frick, W., Kelly, J., Liechti, F. (eds) Aeroecology. Springer, Cham. https://doi.org/10.1007/978-3-319-68576-2_11

Download citation

Publish with us

Policies and ethics