360° Tracking Using a Virtual PTZ Camera

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10484)


Object tracking using still or PTZ cameras is a hard task for large spaces and needs several devices to completely cover the area or to track multiple subjects. The introduction of \(360^{\circ }\) camera technology offers a complete view of the scene in a single image and can be useful to reduce the number of devices needed in the tracking problem. In this paper we present a framework using \(360^{\circ }\) cameras to simulate an unlimited number of PTZ cameras and to be used for tracking. The proposed method to track a single target process an equirectangular view of the scene and obtains a model of the moving object in the image plane. The target is tracked analyzing the next frame of the video sequence and estimating the P,T and Z shifts needed to keep the target in the center of the virtual camera view. The framework allows to use a single \(360^{\circ }\) device to obtain an equirectangular video sequence and to apply the proposed tracking strategy on each target simulating several virtual PTZ cameras.


\(360^{\circ }\) cameras Equirectangular projection PTZ cameras Object tracking 


  1. 1.
  2. 2.
  3. 3.
    Al Haj, M., Bagdanov, A.D., Gonzalez, J., Roca, F.X.: Reactive object tracking with a single PTZ camera. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 1690–1693. IEEE (2010)Google Scholar
  4. 4.
    Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007)CrossRefGoogle Scholar
  5. 5.
    Cai, Y., Medioni, G.: Demo: persistent people tracking and face capture using a PTZ camera. In: 2013 7th International Conference on Distributed Smart Cameras (ICDSC), pp. 1–3. IEEE (2013)Google Scholar
  6. 6.
    Chang, F., Zhang, G., Wang, X., Chen, Z.: PTZ camera target tracking in large complex scenes. In: 2010 8th World Congress on Intelligent Control and Automation (WCICA), pp. 2914–2918. IEEE (2010)Google Scholar
  7. 7.
    Funahasahi, T., Tominaga, M., Fujiwara, T., Koshimizu, H.: Hierarchical face tracking by using PTZ camera. In: 2004 Proceedings of 6th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 427–432. IEEE (2004)Google Scholar
  8. 8.
    Gledhill, D., Tian, G.Y., Taylor, D., Clarke, D.: Panoramic imaging—a review. Comput. Graph. 27(3), 435–445 (2003)CrossRefGoogle Scholar
  9. 9.
    Gleicher, M.: Projective registration with difference decomposition. In: 1997 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 331–337. IEEE (1997)Google Scholar
  10. 10.
    Kang, S., Paik, J.K., Koschan, A., Abidi, B.R., Abidi, M.A.: Real-time video tracking using PTZ cameras. In: Quality Control by Artificial Vision, pp. 103–111. International Society for Optics and Photonics (2003)Google Scholar
  11. 11.
    La Cascia, M., Sclaroff, S., Athitsos, V.: Fast, reliable head tracking under varying illumination: an approach based on registration of texture-mapped 3D models. IEEE Trans. Pattern Anal. Mach. Intell. 22(4), 322–336 (2000)CrossRefGoogle Scholar
  12. 12.
    Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.V.D.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. (TIST) 4(4), 58 (2013)Google Scholar
  13. 13.
    Liu, C., Cao, R., Jia, S., Zhang, Y., Wang, B., Zhao, Q.: The PTZ tracking algorithms evaluation virtual platform system. In: 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), pp. 1–6. IEEE (2014)Google Scholar
  14. 14.
    Micheloni, C., Rinner, B., Foresti, G.L.: Video analysis in pan-tilt-zoom camera networks. IEEE Sig. Process. Mag. 27(5), 78–90 (2010)CrossRefGoogle Scholar
  15. 15.
    Salvagnini, P., Cristani, M., Del Bue, A., Murino, V.: An experimental framework for evaluating PTZ tracking algorithms. In: Crowley, J.L., Draper, B.A., Thonnat, M. (eds.) ICVS 2011. LNCS, vol. 6962, pp. 81–90. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23968-7_9 CrossRefGoogle Scholar
  16. 16.
    Stillman, S.T., Tanawongsuwan, R., Essa, I.A.: A system for tracking and recognizing multiple people with multiple camera. Technical report, Georgia Institute of Technology (1998)Google Scholar
  17. 17.
    Szeliski, R., Shum, H.Y.: Creating full view panoramic image mosaics and environment maps. In: Proceedings of 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 251–258. ACM Press/Addison-Wesley Publishing Co. (1997)Google Scholar
  18. 18.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38(4), 13 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DIIDUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations