Identity Documents Classification as an Image Classification Problem

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10485)


This paper studies the classification of identification documents, which is a critical issue in various security contexts. We address this challenge as an application of image classification, a problematic that received a large attention from the scientific community. Several methods are evaluated and we report results allowing a better understanding of the specificity of identification documents. We are especially interested in deep learning approaches, showing good transfer capabilities and high performances.


Image forensic Image classification Document recognition 


  1. 1.
    Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: CVPR (2016)Google Scholar
  2. 2.
    Bagdanov, A., Worring, M.: Fine-grained document genre classification using first order random graphs. In: ICDAR, pp. 79–83 (2001)Google Scholar
  3. 3.
    Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: BMVC (2014)Google Scholar
  4. 4.
    Chen, S., He, Y., Sun, J., Naoi, S.: Structured document classification by matching local salient features. In: ICPR, pp. 653–656. IEEE (2012)Google Scholar
  5. 5.
    Cimpoi, M., Maji, S., Vedaldi, A.: Deep filter banks for texture recognition and segmentation. In: Proceedings of the IEEE CVPR, pp. 3828–3836 (2015)Google Scholar
  6. 6.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: International Workshop on Statistical Learning in Computer Vision (2004)Google Scholar
  7. 7.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR. IEEE (2009)Google Scholar
  8. 8.
    Eglin, V., Bres, S.: Document page similarity based on layout visual saliency: application to query by example and document classification. In: ICDAR (2003)Google Scholar
  9. 9.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). SpringerCrossRefGoogle Scholar
  10. 10.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. Trans. PAMI 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  11. 11.
    Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 392–407. Springer, Cham (2014). doi: 10.1007/978-3-319-10584-0_26 Google Scholar
  12. 12.
    de las Heras, L.P., Terrades, O.R., Llados, J., Fernandez-Mota, D., Canero, C.: Use case visual bag-of-words techniques for camera based identity document classification. In: ICDAR, pp. 721–725, August 2015Google Scholar
  13. 13.
    Herranz, L., Jiang, S., Li, X.: Scene recognition with CNNs: objects, scales and dataset bias. In: CVPR, pp. 571–579 (2016)Google Scholar
  14. 14.
    Jégou, H., Perronnin, F., Douze, M., Schmid, C., et al.: Aggregating local image descriptors into compact codes. Trans. PAMI 34, 1704–1716 (2012)CrossRefGoogle Scholar
  15. 15.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)Google Scholar
  16. 16.
    Kumar, J., Doermann, D.: Unsupervised classification of structurally similar document images. In: ICDAR, pp. 1225–1229. IEEE (2013)Google Scholar
  17. 17.
    Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: AAAI, vol. 333, pp. 2267–2273 (2015)Google Scholar
  18. 18.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)Google Scholar
  19. 19.
    Liu, L., Shen, C., Wang, L., van den Hengel, A., Wang, C.: Encoding high dimensional local features by sparse coding based fisher vectors. In: NIPS (2014)Google Scholar
  20. 20.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)Google Scholar
  21. 21.
    Lowe, D.: Object recognition from local scale-invariant features. In: ICCV (1999)Google Scholar
  22. 22.
    Oquab, M., Bottou, L., Laptev, I., Sivic, J., et al.: Learning and transferring mid-level image representations using convolutional neural networks. In: CVPR (2014)Google Scholar
  23. 23.
    Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15561-1_11 CrossRefGoogle Scholar
  24. 24.
    Shin, C., Doermann, D.: Document image retrieval based on layout structural similarity. In: IPCV, pp. 606–612 (2006)Google Scholar
  25. 25.
    Sicre, R., Avrithis, Y., Kijak, E., Jurie, F.: Unsupervised part learning for visual recognition. In: CVPR (2017)Google Scholar
  26. 26.
    Sicre, R., Gevers, T.: Dense sampling of features for image retrieval. In: ICIP, pp. 3057–3061. IEEE (2014)Google Scholar
  27. 27.
    Sicre, R., Jégou, H.: Memory vectors for particular object retrieval with multiple queries. In: ICMR, pp. 479–482. ACM (2015)Google Scholar
  28. 28.
    Sicre, R., Jurie, F.: Discriminative part model for visual recognition. CVIU 141, 28–37 (2015)Google Scholar
  29. 29.
    Sicre, R., Tasli, H.E., Gevers, T.: Superpixel based angular differences as a mid-level image descriptor. In: ICPR, pp. 3732–3737. IEEE (2014)Google Scholar
  30. 30.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)Google Scholar
  31. 31.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)Google Scholar
  32. 32.
    Tasli, H.E., Sicre, R., Gevers, T., Alatan, A.A.: Geometry-constrained spatial pyramid adaptation for image classification. In: ICIP (2014)Google Scholar
  33. 33.
    Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-pooling of CNN activations. In: ICLR (2016)Google Scholar
  34. 34.
    Xing, C., Wang, D., Zhang, X., Liu, C.: Document classification with distributions of word vectors. In: APSIPAGoogle Scholar
  35. 35.
    Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: NIPS (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Irisa/InriaRennesFrance
  2. 2.AriadNextCesson-SévignéFrance

Personalised recommendations