Advertisement

Discrete Framelet Transforms

Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

Discrete wavelet/framelet transforms are the backbone of wavelet theory for its applications in a wide scope of areas. In this chapter we study algorithmic aspects and key properties of wavelets and framelets in the discrete setting. First, we introduce a standard (both one-level and multilevel) discrete framelet transform and filter banks. Then we investigate three fundamental properties of a standard discrete framelet transform: perfect reconstruction, sparsity, and stability; these properties are very much desired and crucial in successful applications of wavelets and framelets.

References

  1. 1.
    A. Aldroubi, Oblique and hierarchical multiwavelet bases. Appl. Comput. Harmon. Anal. 4(3), 231–263 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    A. Aldroubi, Q. Sun, W.-S. Tang, p-frames and shift invariant subspaces of L p. J. Fourier Anal. Appl. 7(1), 1–21 (2001)Google Scholar
  3. 3.
    B.K. Alpert, A class of bases in L 2 for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246–262 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    L.W. Baggett, P.E.T. Jorgensen, K.D. Merrill, J.A. Packer, Construction of Parseval wavelets from redundant filter systems. J. Math. Phys. 46(8), 083502, 28 (2005)Google Scholar
  5. 5.
    L.W. Baggett, H.A. Medina, K.D. Merrill, Generalized multi-resolution analyses and a construction procedure for all wavelet sets in R n. J. Fourier Anal. Appl. 5(6), 563–573 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    G. Battle, A block spin construction of ondelettes. I. Lemarié functions. Comm. Math. Phys. 110(4), 601–615 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Ben-Artzi, A. Ron, On the integer translates of a compactly supported function: dual bases and linear projectors. SIAM J. Math. Anal. 21(6), 1550–1562 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    J.J. Benedetto, Frames, sampling, and seizure prediction, in Advances in wavelets (Hong Kong, 1997) (Springer, Singapore, 1999), pp. 1–25Google Scholar
  9. 9.
    J.J. Benedetto, S. Li, The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5(4), 389–427 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    M.A. Berger, Y. Wang, Bounded semigroups of matrices. Linear Algebra Appl. 166, 21–27 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    G. Beylkin, R.R. Coifman, V.V. Rokhlin, Fast wavelet transforms and numerical algorithms. I. Comm. Pure Appl. Math. 44(2), 141–183 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    T. Blu, M. Unser, Approximation error for quasi-interpolators and (multi)wavelet expansions. Appl. Comput. Harmon. Anal. 6(2), 219–251 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    M. Bownik, A characterization of affine dual frames in \(L^{2}(\mathbb{R}^{n})\). Appl. Comput. Harmon. Anal. 8(2), 203–221 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    M. Bownik, The structure of shift-invariant subspaces of \(L^{2}(\mathbb{R}^{n})\). J. Funct. Anal. 177(2), 282–309 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    M. Bownik, Riesz wavelets and generalized multiresolution analyses. Appl. Comput. Harmon. Anal. 14(3), 181–194 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    O. Bratteli, P.E.T. Jorgensen, Wavelets Through a Looking Glass. Applied and Numerical Harmonic Analysis (Birkhäuser Boston, Boston, MA, 2002)Google Scholar
  17. 17.
    C.S. Burrus, R.A. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer (Prentice Hall, 1997)Google Scholar
  18. 18.
    C.A. Cabrelli, C.E. Heil, U.M. Molter, Accuracy of lattice translates of several multidimensional refinable functions. J. Approx. Theory 95(1), 5–52 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    C.A. Cabrelli, C.E. Heil, U.M. Molter, Self-similarity and multiwavelets in higher dimensions. Mem. Am. Math. Soc. 170(807), viii+82 (2004)Google Scholar
  20. 20.
    J.-F. Cai, R.H. Chan, L. Shen, Z. Shen, Restoration of chopped and nodded images by framelets. SIAM J. Sci. Comput. 30(3), 1205–1227 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    E.J. Candès, D.L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Comm. Pure Appl. Math. 57(2), 219–266 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    P.G. Casazza, G. Kutyniok, F. Philipp, Introduction to finite frame theory, in Finite Frames, Appl. Numer. Harmon. Anal. (Birkhäuser, New York, 2013), pp. 1–53Google Scholar
  23. 23.
    A.S. Cavaretta, W. Dahmen, C.A. Micchelli, Stationary subdivision. Mem. Am. Math. Soc. 93(453), vi+186 (1991)Google Scholar
  24. 24.
    R.H. Chan, S.D. Riemenschneider, L. Shen, Z. Shen, Tight frame: an efficient way for high-resolution image reconstruction. Appl. Comput. Harmon. Anal. 17(1), 91–115 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    M. Charina, C. Conti, K. Jetter, G. Zimmermann, Scalar multivariate subdivision schemes and box splines. Comput. Aided Geom. Design 28(5), 285–306 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    M. Charina, J. Stöckler, Tight wavelet frames via semi-definite programming. J. Approx. Theory 162(8), 1429–1449 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    D.-R. Chen, On linear independence of integer translates of refinable vectors. J. Math. Anal. Appl. 222(2), 397–410 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    D.-R. Chen, B. Han, S.D. Riemenschneider, Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments. Adv. Comput. Math. 13(2), 131–165 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    D.-R. Chen, R.-Q. Jia, S.D. Riemenschneider, Convergence of vector subdivision schemes in Sobolev spaces. Appl. Comput. Harmon. Anal. 12(1), 128–149 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    D.-R. Chen, G. Plonka, Convergence of cascade algorithms in Sobolev spaces for perturbed refinement masks. J. Approx. Theory 119(2), 133–155 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    D.-R. Chen, X. Zheng, Stability implies convergence of cascade algorithms in Sobolev space. J. Math. Anal. Appl. 268(1), 41–52 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    H.-L. Chen, Complex Harmonic Splines, Periodic Quasi-Wavelets (Kluwer Academic, Dordrecht, 2000)zbMATHCrossRefGoogle Scholar
  33. 33.
    O. Christensen, An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis (Birkhäuser Boston, Boston, MA, 2003)Google Scholar
  34. 34.
    O. Christensen, Frames and Bases: An Introductory Course. Applied and Numerical Harmonic Analysis (Birkhäuser Boston, Boston, MA, 2008)Google Scholar
  35. 35.
    C.K. Chui, An Introduction to Wavelets, volume 1 of Wavelet Analysis and Its Applications (Academic Press, Boston, MA, 1992)Google Scholar
  36. 36.
    C.K. Chui, J. de Villiers, Wavelet Subdivision Methods (CRC Press, Boca Raton, FL, 2011)zbMATHGoogle Scholar
  37. 37.
    C.K. Chui, B. Han, X. Zhuang, A dual-chain approach for bottom-up construction of wavelet filters with any integer dilation. Appl. Comput. Harmon. Anal. 33(2), 204–225 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    C.K. Chui, W. He, Compactly supported tight frames associated with refinable functions. Appl. Comput. Harmon. Anal. 8(3), 293–319 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    C.K. Chui, W. He, J. Stöckler, Compactly supported tight and sibling frames with maximum vanishing moments. Appl. Comput. Harmon. Anal. 13(3), 224–262 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    C.K. Chui, W. He, J. Stöckler, Nonstationary tight wavelet frames. I. Bounded intervals. Appl. Comput. Harmon. Anal. 17(2), 141–197 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    C.K. Chui, W. He, J. Stöckler, Q. Sun, Compactly supported tight affine frames with integer dilations and maximum vanishing moments. Adv. Comput. Math. 18(2–4), 159–187 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    C.K. Chui, Q. Jiang, Surface subdivision schemes generated by refinable bivariate spline function vectors. Appl. Comput. Harmon. Anal. 15(2), 147–162 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    C.K. Chui, Q. Jiang, Balanced multi-wavelets in \(\mathbb{R}^{s}\). Math. Comp. 74(251), 1323–1344 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    C.K. Chui, E. Quak, Wavelets on a bounded interval, in Numerical Methods in Approximation Theory, Vol. 9 (Oberwolfach, 1991), volume 105 of Internat. Ser. Numer. Math. (Birkhäuser, Basel, 1992), pp. 53–75Google Scholar
  45. 45.
    C.K. Chui, X.L. Shi, Inequalities of Littlewood-Paley type for frames and wavelets. SIAM J. Math. Anal. 24(1), 263–277 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    C.K. Chui, X.L. Shi, J. Stöckler, Affine frames, quasi-affine frames, and their duals. Adv. Comput. Math. 8(1–2), 1–17 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    C.K. Chui, J. Wang, On compactly supported spline wavelets and a duality principle. Trans. Am. Math. Soc. 330(2), 903–915 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    A. Cohen, Numerical Analysis of Wavelet Methods, volume 32 of Studies in Mathematics and Its Applications (North-Holland Publishing, Amsterdam, 2003)Google Scholar
  49. 49.
    A. Cohen, I. Daubechies, A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math. J. 68(2), 313–335 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    A. Cohen, I. Daubechies, Orthonormal bases of compactly supported wavelets. III. Better frequency resolution. SIAM J. Math. Anal. 24(2), 520–527 (1993)zbMATHCrossRefGoogle Scholar
  51. 51.
    A. Cohen, I. Daubechies, A new technique to estimate the regularity of refinable functions. Rev. Mat. Iberoamericana 12(2), 527–591 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    A. Cohen, I. Daubechies, J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45(5), 485–560 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    A. Cohen, I. Daubechies, G. Plonka, Regularity of refinable function vectors. J. Fourier Anal. Appl. 3(3), 295–324 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    A. Cohen, I. Daubechies, P. Vial, Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1(1), 54–81 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    A. Cohen, K. Gröchenig, L.F. Villemoes, Regularity of multivariate refinable functions. Constr. Approx. 15(2), 241–255 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    A. Cohen, R.D. Ryan, Wavelets and Multiscale Signal Processing, volume 11 of Applied Mathematics and Mathematical Computation (Chapman & Hall, London, 1995). Revised version of Cohen’s doctoral thesis in 1992, Translated from the French by RyanGoogle Scholar
  57. 57.
    A. Cohen, Q. Sun, An arithmetic characterization of the conjugate quadrature filters associated to orthonormal wavelet bases. SIAM J. Math. Anal. 24(5), 1355–1360 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    R.R. Coifman, D.L. Donoho, Translation invariant de-noising, in Wavelets and Statistics (Springer, New York, 1995), pp. 125–150zbMATHGoogle Scholar
  59. 59.
    R.R. Coifman, M. Maggioni, Diffusion wavelets. Appl. Comput. Harmon. Anal. 21(1), 53–94 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    R.R. Coifman, Y. Meyer, M.V. Wickerhauser, Size properties of wavelet-packets, in Wavelets and Their Applications, pp. 453–470 (Jones and Bartlett, Boston, MA, 1992)Google Scholar
  61. 61.
    C. Conti, M. Cotronei, T. Sauer, Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution. J. Comput. Appl. Math. 233(7), 1649–1659 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    S. Dahlke, K. Gröchenig, P. Maass, A new approach to interpolating scaling functions. Appl. Anal. 72(3–4), 485–500 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2(4), 341–361 (1996)MathSciNetzbMATHGoogle Scholar
  64. 64.
    W. Dahmen, Multiscale and wavelet methods for operator equations, in Multiscale Problems and Methods in Numerical Simulations, volume 1825 of Lecture Notes in Math. (Springer, Berlin, 2003), pp. 31–96Google Scholar
  65. 65.
    W. Dahmen, B. Han, R.-Q. Jia, A. Kunoth, Biorthogonal multiwavelets on the interval: cubic Hermite splines. Constr. Approx. 16(2), 221–259 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    W. Dahmen, A. Kunoth, K. Urban, Biorthogonal spline wavelets on the interval—stability and moment conditions. Appl. Comput. Harmon. Anal. 6(2), 132–196 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    X.-R. Dai, Q. Sun, Z. Zhang, Compactly supported both m and n refinable distributions. East J. Approx. 6(2), 201–209 (2000)MathSciNetzbMATHGoogle Scholar
  68. 68.
    I. Daubechies, Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41(7), 909–996 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    I. Daubechies, The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36(5), 961–1005 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    I. Daubechies, Ten Lectures on Wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992)Google Scholar
  71. 71.
    I. Daubechies, Orthonormal bases of compactly supported wavelets. II. Variations on a theme. SIAM J. Math. Anal. 24(2), 499–519 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    I. Daubechies, B. Han, Pairs of dual wavelet frames from any two refinable functions. Constr. Approx. 20(3), 325–352 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14(1), 1–46 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    I. Daubechies, Y. Huang, How does truncation of the mask affect a refinable function? Constr. Approx. 11(3), 365–380 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    I. Daubechies, J.C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions. SIAM J. Math. Anal. 22(5), 1388–1410 (1991)zbMATHCrossRefGoogle Scholar
  77. 77.
    I. Daubechies, J.C. Lagarias, Sets of matrices all infinite products of which converge. Linear Algebra Appl. 161, 227–263 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    I. Daubechies, J.C. Lagarias, Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23(4), 1031–1079 (1992)Google Scholar
  79. 79.
    I. Daubechies, J.C. Lagarias, On the thermodynamic formalism for multifractal functions. Rev. Math. Phys. 6(5A), 1033–1070 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    C. de Boor, R.A. DeVore, A. Ron, Approximation from shift-invariant subspaces of \(L_{2}(\mathbb{R}^{d})\). Trans. Am. Math. Soc. 341(2), 787–806 (1994)zbMATHGoogle Scholar
  81. 81.
    C. de Boor, R.A. DeVore, A. Ron, The structure of finitely generated shift-invariant spaces in L 2(R d). J. Funct. Anal. 119(1), 37–78 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes. Constr. Approx. 5(1), 49–68 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    R.A. DeVore, Nonlinear approximation, in Acta Numerica, 1998, volume 7 of Acta Numer. (Cambridge Univ. Press, Cambridge, 1998), pp. 51–150Google Scholar
  84. 84.
    M.N. Do, M. Vetterli, Contourlets, in Beyond Wavelets, volume 10 of Stud. Comput. Math. (Academic Press/Elsevier, San Diego, CA, 2003), pp. 83–105Google Scholar
  85. 85.
    B. Dong, Z. Shen, Construction of biorthogonal wavelets from pseudo-splines. J. Approx. Theory 138(2), 211–231 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets. Appl. Comput. Harmon. Anal. 22(1), 78–104 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    B. Dong, Z. Shen, MRA-based wavelet frames and applications, in Mathematics in Image Processing, volume 19 of IAS/Park City Math. Ser. (Amer. Math. Soc., Providence, RI, 2013), pp. 9–158Google Scholar
  88. 88.
    G.C. Donovan, J.S. Geronimo, D.P. Hardin, Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30(5), 1029–1056 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    G.C. Donovan, J.S. Geronimo, D.P. Hardin, P.R. Massopust, Construction of orthogonal wavelets using fractal interpolation functions. SIAM J. Math. Anal. 27(4), 1158–1192 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    S. Dubuc, Interpolation through an iterative scheme. J. Math. Anal. Appl. 114(1), 185–204 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    S. Dubuc, J.-L. Merrien, Convergent vector and Hermite subdivision schemes. Constr. Approx. 23(1), 1–22 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    R.J. Duffin, A.C. Schaeffer, A class of nonharmonic fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    N. Dyn, J.A. Gregory, D. Levin, A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graphics 9, 160–169 (1990)zbMATHCrossRefGoogle Scholar
  94. 94.
    N. Dyn, K. Hormann, M.A. Sabin, Z. Shen, Polynomial reproduction by symmetric subdivision schemes. J. Approx. Theory 155(1), 28–42 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    N. Dyn, D. Levin, Analysis of Hermite-type subdivision schemes, in Approximation Theory VIII, Vol. 2 (College Station, TX, 1995), volume 6 of Ser. Approx. Decompos. (World Sci. Publ., River Edge, NJ, 1995), pp. 117–124Google Scholar
  96. 96.
    N. Dyn, D. Levin, Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    N. Dyn, D. Levin, J.A. Gregory, A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Design 4(4), 257–268 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    R.E. Edwards, Fourier Series. A Modern Introduction. Vol. 1, volume 64 of Graduate Texts in Mathematics, 2nd edn. (Springer, New York/Berlin, 1979)Google Scholar
  99. 99.
    M. Ehler, On multivariate compactly supported bi-frames. J. Fourier Anal. Appl. 13(5), 511–532 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    M. Ehler, B. Han, Wavelet bi-frames with few generators from multivariate refinable functions. Appl. Comput. Harmon. Anal. 25(3), 407–414 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    T. Eirola, Sobolev characterization of solutions of dilation equations. SIAM J. Math. Anal. 23(4), 1015–1030 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    H.G. Feichtinger, K.H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86(2), 307–340 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    G.B. Folland, Real Analysis. Pure and Applied Mathematics (New York), 2nd edn. (Wiley, New York, 1999). Modern Techniques and Their Applications, A Wiley-Interscience PublicationGoogle Scholar
  104. 104.
    M. Frazier, G. Garrigós, K. Wang, G. Weiss, A characterization of functions that generate wavelet and related expansion. J. Fourier Anal. Appl. 3, 883–906 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    M. Frazier, B. Jawerth, G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, volume 79 of CBMS Regional Conference Series in Mathematics (The American Mathematical Society, Providence, RI, 1991)zbMATHCrossRefGoogle Scholar
  106. 106.
    J.-P. Gabardo, D. Han, Frames associated with measurable spaces. Adv. Comput. Math. 18(2–4), 127–147 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    J.S. Geronimo, D.P. Hardin, P.R. Massopust, Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78(3), 373–401 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    S.S. Goh, B. Han, Z. Shen, Tight periodic wavelet frames and approximation orders. Appl. Comput. Harmon. Anal. 31(2), 228–248 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    S.S. Goh, S.L. Lee, K.-M. Teo, Multidimensional periodic multiwavelets. J. Approx. Theory 98(1), 72–103 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    S.S. Goh, Z.Y. Lim, Z. Shen, Symmetric and antisymmetric tight wavelet frames. Appl. Comput. Harmon. Anal. 20(3), 411–421 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    T.N.T. Goodman, A class of orthogonal refinable functions and wavelets. Constr. Approx. 19(4), 525–540 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    T.N.T. Goodman, R.-Q. Jia, D.-X. Zhou, Local linear independence of refinable vectors of functions. Proc. Roy. Soc. Edinburgh Sect. A 130(4), 813–826 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    T.N.T. Goodman, S.L. Lee, Wavelets of multiplicity r. Trans. Am. Math. Soc. 342(1), 307–324 (1994)Google Scholar
  114. 114.
    T.N.T. Goodman, S.L. Lee, W.-S. Tang, Wavelets in wandering subspaces. Trans. Am. Math. Soc. 338(2), 639–654 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    L. Grafakos, Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, 3rd edn. (Springer, New York, 2014)Google Scholar
  116. 116.
    A. Grossmann, J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    N. Guglielmi, V. Protasov, Exact computation of joint spectral characteristics of linear operators. Found. Comput. Math. 13(1), 37–97 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    K. Guo, G. Kutyniok, D. Labate, Sparse multidimensional representations using anisotropic dilation and shear operators, in Wavelets and Splines: Athens 2005. Mod. Methods Math. (Nashboro Press, Brentwood, TN, 2006), pp. 189–201Google Scholar
  119. 119.
    K. Guo, D. Labate, Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    A. Haar, Zur theorie der orthogonalen funktionen-systeme. Math. Ann. 69, 331–371 (1910)MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    B. Han, Wavelets. Master’s thesis, Institute of Mathematics, Chinese Academy of Sciences, June 1994Google Scholar
  122. 122.
    B. Han, Some applications of projection operators in wavelets. Acta Math. Sinica (N.S.) 11(1), 105–112 (1995)Google Scholar
  123. 123.
    B. Han, On dual wavelet tight frames. Appl. Comput. Harmon. Anal. 4(4), 380–413 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    B. Han, Subdivision schemes, biorthogonal wavelets and image compression. PhD thesis, Department of Mathematical Sciences, University of Alberta, July 1998Google Scholar
  125. 125.
    B. Han, Symmetric orthonormal scaling functions and wavelets with dilation factor 4. Adv. Comput. Math. 8(3), 221–247 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    B. Han, Analysis and construction of optimal multivariate biorthogonal wavelets with compact support. SIAM J. Math. Anal. 31(2), 274–304 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J. Approx. Theory 110(1), 18–53 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    B. Han, Projectable multivariate refinable functions and biorthogonal wavelets. Appl. Comput. Harmon. Anal. 13(1), 89–102 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    B. Han, Classification and construction of bivariate subdivision schemes, in Curve and Surface Fitting (Saint-Malo, 2002). Mod. Methods Math. (Nashboro Press, Brentwood, TN, 2003), pp. 187–197Google Scholar
  130. 130.
    B. Han, Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J. Comput. Appl. Math. 155(1), 43–67 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl. 24(3), 693–714 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    B. Han, Vector cascade algorithms and refinable function vectors in Sobolev spaces. J. Approx. Theory 124(1), 44–88 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    B. Han, Symmetric multivariate orthogonal refinable functions. Appl. Comput. Harmon. Anal. 17(3), 277–292 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    B. Han, Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix. Adv. Comput. Math. 24(1–4), 375–403 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    B. Han, Refinable functions and cascade algorithms in weighted spaces with Hölder continuous masks. SIAM J. Math. Anal. 40(1), 70–102 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    B. Han, Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26(1), 14–42 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    B. Han, Matrix extension with symmetry and applications to symmetric orthonormal complex M-wavelets. J. Fourier Anal. Appl. 15(5), 684–705 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    B. Han, Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. Appl. Comput. Harmon. Anal. 29(3), 330–353 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    B. Han, The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets. Math. Comp. 79(270), 917–951 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    B. Han, Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules. Adv. Comput. Math. 32(2), 209–237 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    B. Han, Symmetric orthogonal filters and wavelets with linear-phase moments. J. Comput. Appl. Math. 236(4), 482–503 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    B. Han, Nonhomogeneous wavelet systems in high dimensions. Appl. Comput. Harmon. Anal. 32(2), 169–196 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  143. 143.
    B. Han, Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters. Appl. Comput. Harmon. Anal. 35(2), 200–227 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    B. Han, Properties of discrete framelet transforms. Math. Model. Nat. Phenom. 8(1), 18–47 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    B. Han, The projection method for multidimensional framelet and wavelet analysis. Math. Model. Nat. Phenom. 9(5), 83–110 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    B. Han, Symmetric tight framelet filter banks with three high-pass filters. Appl. Comput. Harmon. Anal. 37(1), 140–161 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    B. Han, Algorithm for constructing symmetric dual framelet filter banks. Math. Comp. 84(292), 767–801 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  148. 148.
    B. Han, On linear independence of integer shifts of compactly supported distributions. J. Approx. Theory 201, 1–6 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    B. Han, R.-Q. Jia, Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29(5), 1177–1199 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    B. Han, R.-Q. Jia, Optimal interpolatory subdivision schemes in multidimensional spaces. SIAM J. Numer. Anal. 36(1), 105–124 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  151. 151.
    B. Han, R.-Q. Jia, Quincunx fundamental refinable functions and quincunx biorthogonal wavelets. Math. Comp. 71(237), 165–196 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  152. 152.
    B. Han, R.-Q. Jia, Optimal C 2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils. Math. Comp. 75(255), 1287–1308 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    B. Han, Q. Jiang, Multiwavelets on the interval. Appl. Comput. Harmon. Anal. 12(1), 100–127 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    B. Han, Q. Jiang, Z. Shen, X. Zhuang, Symmetric canonical quincunx tight framelets with high vanishing moments and smoothness. Math. Comp. 87, 347–379 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  155. 155.
    B. Han, S.-G. Kwon, S.S. Park, Riesz multiwavelet bases. Appl. Comput. Harmon. Anal. 20(2), 161–183 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    B. Han, S.-G. Kwon, X. Zhuang, Generalized interpolating refinable function vectors. J. Comput. Appl. Math. 227(2), 254–270 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    B. Han, Q. Mo, Multiwavelet frames from refinable function vectors. Adv. Comput. Math. 18(2–4), 211–245 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    B. Han, Q. Mo, Splitting a matrix of Laurent polynomials with symmetry and its application to symmetric framelet filter banks. SIAM J. Matrix Anal. Appl. 26(1), 97–124 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  159. 159.
    B. Han, Q. Mo, Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Appl. Comput. Harmon. Anal. 18(1), 67–93 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  160. 160.
    B. Han, Q. Mo, Analysis of optimal bivariate symmetric refinable Hermite interpolants. Commun. Pure Appl. Anal. 6(3), 689–718 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    B. Han, Q. Mo, Z. Zhao, Compactly supported tensor product complex tight framelets with directionality. SIAM J. Math. Anal. 47(3), 2464–2494 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  162. 162.
    B. Han, Q. Mo, Z. Zhao, X. Zhuang, Construction and applications of compactly supported directional complex tight framelets. Preprint, 2016.Google Scholar
  163. 163.
    B. Han, Z. Shen, Wavelets with short support. SIAM J. Math. Anal. 38(2), 530–556 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  164. 164.
    B. Han, Z. Shen, Compactly supported symmetric C wavelets with spectral approximation order. SIAM J. Math. Anal. 40(3), 905–938 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  165. 165.
    B. Han, Z. Shen, Dual wavelet frames and Riesz bases in Sobolev spaces. Constr. Approx. 29(3), 369–406 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  166. 166.
    B. Han, T.P.-Y. Yu, B. Piper, Multivariate refinable Hermite interpolant. Math. Comp. 73(248), 1913–1935 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    B. Han, Z. Zhao, Tensor product complex tight framelets with increasing directionality. SIAM J. Imaging Sci. 7(2), 997–1034 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  168. 168.
    B. Han, Z. Zhao, X. Zhuang, Directional tensor product complex tight framelets with low redundancy. Appl. Comput. Harmon. Anal. 41(2), 603–637 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    B. Han, X. Zhuang, Smooth affine shear tight frames with mra structure. Appl. Comput. Harmon. Anal. 39(2), 300–338 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  170. 170.
    D. Han, K. Kornelson, D.R. Larson, E. Weber, Frames for Undergraduates, volume 40 of Student Mathematical Library (American Mathematical Society, Providence, RI, 2007)zbMATHGoogle Scholar
  171. 171.
    D. Han, D.R. Larson, Frames, bases and group representations. Mem. Am. Math. Soc. 147(697), x+94 (2000)Google Scholar
  172. 172.
    D.P. Hardin, T.A. Hogan, Q. Sun, The matrix-valued Riesz lemma and local orthonormal bases in shift-invariant spaces. Adv. Comput. Math. 20(4), 367–384 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  173. 173.
    D.P. Hardin, J.A. Marasovich, Biorthogonal multiwavelets on [−1, 1]. Appl. Comput. Harmon. Anal. 7(1), 34–53 (1999)Google Scholar
  174. 174.
    M.F. Hassan, I.P. Ivrissimitzis, N.A. Dodgson, M.A. Sabin, An interpolating 4-point C 2 ternary stationary subdivision scheme. Comput. Aided Geom. Design 19(1), 1–18 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  175. 175.
    C.E. Heil, What is a frame? Notices Am. Math. Soc. 60(6), 748–750 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    C.E. Heil, D. Colella, Matrix refinement equations: existence and uniqueness. J. Fourier Anal. Appl. 2(4), 363–377 (1996)MathSciNetzbMATHGoogle Scholar
  177. 177.
    C.E. Heil, G. Strang, V. Strela, Approximation by translates of refinable functions. Numer. Math. 73(1), 75–94 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  178. 178.
    C.E. Heil, D.F. Walnut, Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–666 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  179. 179.
    E. Hernández, G. Weiss, A First Course on Wavelets. Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1996)Google Scholar
  180. 180.
    L. Hervé, Multi-resolution analysis of multiplicity d: applications to dyadic interpolation. Appl. Comput. Harmon. Anal. 1(4), 299–315 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    M. Holschneider, R. Kronland-Martinet, J. Morlet, P. Tchamitchian. A real-time algorithm for signal analysis with the help of the wavelet transform, in Wavelets (Marseille, 1987). Inverse Probl. Theoret. Imaging (Springer, Berlin, 1989), pp. 286–297Google Scholar
  182. 182.
    S. Jaffard, Y. Meyer, Wavelet methods for pointwise regularity and local oscillations of functions. Mem. Am. Math. Soc. 123(587), x+110 (1996)Google Scholar
  183. 183.
    S. Jaffard, Y. Meyer, R.D. Ryan, Wavelets, revised edn. (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001)Google Scholar
  184. 184.
    K. Jetter, G. Plonka, A survey on L 2-approximation orders from shift-invariant spaces, in Multivariate Approximation and Applications (Cambridge Univ. Press, Cambridge, 2001), pp. 73–111zbMATHGoogle Scholar
  185. 185.
    K. Jetter, D.-X. Zhou, Order of linear approximation from shift-invariant spaces. Constr. Approx. 11(4), 423–438 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  186. 186.
    K. Jetter, D.-X. Zhou, Approximation order of linear operators and finitely generated shift-invariant spaces. preprint, 1998Google Scholar
  187. 187.
    R.-Q. Jia, Subdivision schemes in L p spaces. Adv. Comput. Math. 3(4), 309–341 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  188. 188.
    R.Q. Jia, The Toeplitz theorem and its applications to approximation theory and linear PDEs. Trans. Am. Math. Soc. 347(7), 2585–2594 (1995)MathSciNetzbMATHGoogle Scholar
  189. 189.
    R.-Q. Jia, Shift-invariant spaces on the real line. Proc. Am. Math. Soc. 125(3), 785–793 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  190. 190.
    R.-Q. Jia, Approximation properties of multivariate wavelets. Math. Comp. 67(222), 647–665 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  191. 191.
    R.-Q. Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces. Trans. Am. Math. Soc. 351(10), 4089–4112 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  192. 192.
    R.-Q. Jia, Approximation with scaled shift-invariant spaces by means of quasi-projection operators. J. Approx. Theory 131(1), 30–46 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  193. 193.
    R.-Q. Jia, Bessel sequences in Sobolev spaces. Appl. Comput. Harmon. Anal. 20(2), 298–311 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  194. 194.
    R.-Q. Jia, Q. Jiang, Approximation power of refinable vectors of functions, in Wavelet Analysis and Applications (Guangzhou, 1999), volume 25 of AMS/IP Stud. Adv. Math. (Amer. Math. Soc., Providence, RI, 2002), pp. 155–178Google Scholar
  195. 195.
    R.-Q. Jia, Q. Jiang, Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24(4), 1071–1109 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  196. 196.
    R.-Q. Jia, Q. Jiang, S.L. Lee, Convergence of cascade algorithms in Sobolev spaces and integrals of wavelets. Numer. Math. 91(3), 453–473 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  197. 197.
    R.-Q. Jia, Q. Jiang, Z. Shen, Distributional solutions of nonhomogeneous discrete and continuous refinement equations. SIAM J. Math. Anal. 32(2), 420–434 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  198. 198.
    R.-Q. Jia, K.-S. Lau, D.-X. Zhou, L p solutions of refinement equations. J. Fourier Anal. Appl. 7(2), 143–167 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  199. 199.
    R.-Q. Jia, S. Li, Refinable functions with exponential decay: an approach via cascade algorithms. J. Fourier Anal. Appl. 17(5), 1008–1034 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  200. 200.
    R.-Q. Jia, C.A. Micchelli, Using the refinement equations for the construction of pre-wavelets. II. Powers of two, in Curves and Surfaces (Chamonix-Mont-Blanc, 1990) (Academic Press, Boston, MA, 1991), pp. 209–246Google Scholar
  201. 201.
    R.-Q. Jia, C.A. Micchelli, On linear independence for integer translates of a finite number of functions. Proc. Edinburgh Math. Soc. (2) 36(1), 69–85 (1993)Google Scholar
  202. 202.
    R.-Q. Jia, S.D. Riemenschneider, D.-X. Zhou, Approximation by multiple refinable functions. Can. J. Math. 49(5), 944–962 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  203. 203.
    R.-Q. Jia, S.D. Riemenschneider, D.-X. Zhou, Vector subdivision schemes and multiple wavelets. Math. Comp. 67(224), 1533–1563 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  204. 204.
    R.-Q. Jia, S.D. Riemenschneider, D.-X. Zhou, Smoothness of multiple refinable functions and multiple wavelets. SIAM J. Matrix Anal. Appl. 21(1), 1–28 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  205. 205.
    R.-Q. Jia, Z. Shen, Multiresolution and wavelets. Proc. Edinburgh Math. Soc. (2) 37(2), 271–300 (1994)Google Scholar
  206. 206.
    R.-Q. Jia, J. Wang, Stability and linear independence associated with wavelet decompositions. Proc. Am. Math. Soc. 117(4), 1115–1124 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  207. 207.
    R.-Q. Jia, J. Wang, D.-X. Zhou, Compactly supported wavelet bases for Sobolev spaces. Appl. Comput. Harmon. Anal. 15(3), 224–241 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  208. 208.
    Q. Jiang, On the regularity of matrix refinable functions. SIAM J. Math. Anal. 29(5), 1157–1176 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  209. 209.
    Q. Jiang, Multivariate matrix refinable functions with arbitrary matrix dilation. Trans. Am. Math. Soc. 351(6), 2407–2438 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  210. 210.
    Q. Jiang, Parameterizations of masks for tight affine frames with two symmetric/antisymmetric generators. Adv. Comput. Math. 18(2–4), 247–268 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  211. 211.
    Q. Jiang, P. Oswald, S.D. Riemenschneider, \(\sqrt{3}\)-subdivision schemes: maximal sum rule orders. Constr. Approx. 19(3), 437–463 (2003)Google Scholar
  212. 212.
    F. Keinert, Raising multiwavelet approximation order through lifting. SIAM J. Math. Anal. 32(5), 1032–1049 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  213. 213.
    F. Keinert, Wavelets and Multiwavelets. Studies in Advanced Mathematics (Chapman & Hall/CRC, Boca Raton, FL, 2004)Google Scholar
  214. 214.
    A.V. Krivoshein, M.A. Skopina, Approximation by frame-like wavelet systems. Appl. Comput. Harmon. Anal. 31(3), 410–428 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  215. 215.
    G. Kutyniok, W.-Q. Lim, Compactly supported shearlets are optimally sparse. J. Approx. Theory 163(11), 1564–1589 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  216. 216.
    G. Kutyniok, M. Shahram, X. Zhuang, ShearLab: a rational design of a digital parabolic scaling algorithm. SIAM J. Imaging Sci. 5(4), 1291–1332 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  217. 217.
    D. Labate, G. Weiss, E. Wilson, Wavelets. Notices Am. Math. Soc. 60(1), 66–76 (2013)CrossRefGoogle Scholar
  218. 218.
    M.-J. Lai, A. Petukhov, Method of virtual components for constructing redundant filter banks and wavelet frames. Appl. Comput. Harmon. Anal. 22(3), 304–318 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  219. 219.
    M.-J. Lai, D.W. Roach, Parameterizations of univariate orthogonal wavelets with short support, in Approximation Theory, X (St. Louis, MO, 2001). Innov. Appl. Math. (Vanderbilt Univ. Press, Nashville, TN, 2002), pp. 369–384Google Scholar
  220. 220.
    D. Langemann, J. Prestin, Multivariate periodic wavelet analysis. Appl. Comput. Harmon. Anal. 28(1), 46–66 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  221. 221.
    W.M. Lawton, Tight frames of compactly supported affine wavelets. J. Math. Phys. 31(8), 1898–1901 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  222. 222.
    W.M. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelet bases. J. Math. Phys. 32(1), 57–61 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  223. 223.
    W.M. Lawton, Applications of complex valued wavelet transforms to subband decomposition. IEEE Trans. Signal Process. 41(12), 3566–3568 (1993)zbMATHCrossRefGoogle Scholar
  224. 224.
    W.M. Lawton, S.L. Lee, Z. Shen, Characterization of compactly supported refinable splines. Adv. Comput. Math. 3(1–2), 137–145 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  225. 225.
    W.M. Lawton, S.L. Lee, Z. Shen, Stability and orthonormality of multivariate refinable functions. SIAM J. Math. Anal. 28(4), 999–1014 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  226. 226.
    J. Lebrun, M. Vetterli, Balanced multiwavelets theory and design. IEEE Trans. Signal Process. 46(4), 1119–1125 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  227. 227.
    P.G. Lemarié, Ondelettes à localisation exponentielle. J. Math. Pures Appl. (9) 67(3), 227–236 (1988)Google Scholar
  228. 228.
    P.G. Lemarié, Fonctions à support compact dans les analyses multi-résolutions. Rev. Mat. Iberoamericana 7(2), 157–182 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  229. 229.
    P.G. Lemarié-Rieusset, On the existence of compactly supported dual wavelets. Appl. Comput. Harmon. Anal. 4(1), 117–118 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  230. 230.
    B. Li, L. Peng, Parametrization for balanced multifilter banks. Int. J. Wavelets Multiresolut. Inf. Process. 6(4), 617–629 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  231. 231.
    S. Li, Convergence rates of vector cascade algorithms in L p. J. Approx. Theory 137(1), 123–142 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  232. 232.
    S. Li, J. Xian, Biorthogonal multiple wavelets generated by vector refinement equation. Sci. China Ser. A 50(7), 1015–1025 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  233. 233.
    J.-M. Lina, M. Mayrand, Complex Daubechies wavelets. Appl. Comput. Harmon. Anal. 2(3), 219–229 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  234. 234.
    R.-L. Long, High Dimensional Wavelet Analysis (World Publishing, Singapore, 1995) (Chinese)Google Scholar
  235. 235.
    R.-L. Long, D.-R. Chen, Biorthogonal wavelet bases on \(\mathbb{R}^{d}\). Appl. Comput. Harmon. Anal. 2(3), 230–242 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  236. 236.
    R.-L. Long, W. Chen, S. Yuan, Wavelets generated by vector multiresolution analysis. Appl. Comput. Harmon. Anal. 4(3), 317–350 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  237. 237.
    R.-L. Long, Q. Mo, L 2-convergence of vector cascade algorithm. Approx. Theory Appl. (N.S.) 15(4), 29–49 (1999)Google Scholar
  238. 238.
    J. MacArthur, K.F. Taylor, Wavelets with crystal symmetry shifts. J. Fourier Anal. Appl. 17(6), 1109–1118 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  239. 239.
    S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L 2(R). Trans. Am. Math. Soc. 315(1), 69–87 (1989)MathSciNetzbMATHGoogle Scholar
  240. 240.
    S.G. Mallat, A Wavelet Tour of Signal Processing, 3rd edn. (Elsevier/Academic Press, Amsterdam, 2009)zbMATHGoogle Scholar
  241. 241.
    J.-L. Merrien, A family of Hermite interpolants by bisection algorithms. Numer. Algorithms 2(2), 187–200 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  242. 242.
    Y. Meyer, Ondelettes et opérateurs. I, II, and III. Actualités Mathématiques (Hermann, Paris, 1990)Google Scholar
  243. 243.
    Y. Meyer, Ondelettes sur l’intervalle. Rev. Mat. Iberoamericana 7(2), 115–133 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  244. 244.
    C.A. Micchelli, H. Prautzsch, Uniform refinement of curves. Linear Algebra Appl. 114/115, 841–870 (1989)Google Scholar
  245. 245.
    C.A. Micchelli, T. Sauer, Regularity of multiwavelets. Adv. Comput. Math. 7(4), 455–545 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  246. 246.
    C.A. Micchelli, T. Sauer, On vector subdivision. Math. Z. 229(4), 621–674 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  247. 247.
    C.A. Micchelli, Y. Xu, Using the matrix refinement equation for the construction of wavelets on invariant sets. Appl. Comput. Harmon. Anal. 1(4), 391–401 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  248. 248.
    Q. Mo, Compactly supported symmetry MRA wavelet frames. Ph.D. thesis, Department of Mathematical and Statistical Sciences, University of Alberta, August 2003Google Scholar
  249. 249.
    Q. Mo, S. Li, Symmetric tight wavelet frames with rational coefficients. Appl. Comput. Harmon. Anal. 31(2), 249–263 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  250. 250.
    L. Monzón, G. Beylkin, W. Hereman, Compactly supported wavelets based on almost interpolating and nearly linear phase filters (coiflets). Appl. Comput. Harmon. Anal. 7(2), 184–210 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  251. 251.
    D.J. Newman, A simple proof of Wiener’s 1∕f theorem. Proc. Am. Math. Soc. 48, 264–265 (1975)MathSciNetzbMATHGoogle Scholar
  252. 252.
    I.Ya. Novikov, V.Yu. Protasov, M.A. Skopina, Wavelet Theory, volume 239 of Translations of Mathematical Monographs (American Mathematical Society, Providence, RI, 2011)Google Scholar
  253. 253.
    L. Peng, H. Wang, Construction for a class of smooth wavelet tight frames. Sci. China Ser. F 46(6), 445–458 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  254. 254.
    A. Petukhov, Explicit construction of framelets. Appl. Comput. Harmon. Anal. 11(2), 313–327 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  255. 255.
    A. Petukhov, Symmetric framelets. Constr. Approx. 19(2), 309–328 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  256. 256.
    G. Plonka, Approximation order provided by refinable function vectors. Constr. Approx. 13(2), 221–244 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  257. 257.
    G. Plonka, V. Strela, Construction of multiscaling functions with approximation and symmetry. SIAM J. Math. Anal. 29(2), 481–510 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  258. 258.
    S.D. Riemenschneider, Z. Shen, Multidimensional interpolatory subdivision schemes. SIAM J. Numer. Anal. 34(6), 2357–2381 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  259. 259.
    O. Rioul, Simple regularity criteria for subdivision schemes. SIAM J. Math. Anal. 23(6), 1544–1576 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  260. 260.
    A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution. Constr. Approx. 5(3), 297–308 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  261. 261.
    A. Ron, Introduction to shift-invariant spaces. Linear independence, in Multivariate Approximation and Applications (Cambridge Univ. Press, Cambridge, 2001), pp. 112–151Google Scholar
  262. 262.
    A. Ron, Z. Shen, Frames and stable bases for shift-invariant subspaces of \(L_{2}(\mathbb{R}^{d})\). Can. J. Math. 47(5), 1051–1094 (1995)zbMATHCrossRefGoogle Scholar
  263. 263.
    A. Ron, Z. Shen, Affine systems in \(L_{2}(\mathbb{R}^{d})\). II. Dual systems. J. Fourier Anal. Appl. 3(5), 617–637 (1997)CrossRefGoogle Scholar
  264. 264.
    A. Ron, Z. Shen, Affine systems in \(L_{2}(\mathbb{R}^{d})\): the analysis of the analysis operator. J. Funct. Anal. 148(2), 408–447 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  265. 265.
    A. Ron, Z. Shen, The Sobolev regularity of refinable functions. J. Approx. Theory 106(2), 185–225 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  266. 266.
    G.-C. Rota, G. Strang, A note on the joint spectral radius. Nederl. Akad. Wetensch. Proc. Ser. A 63 Indag. Math. 22, 379–381 (1960)Google Scholar
  267. 267.
    H.L. Royden, Real Analysis, 3rd edn. (Macmillan Publishing, New York, 1988)zbMATHGoogle Scholar
  268. 268.
    A. San Antolín, R.A. Zalik, Matrix-valued wavelets and multiresolution analysis. J. Appl. Funct. Anal. 7(1–2), 13–25 (2012)MathSciNetzbMATHGoogle Scholar
  269. 269.
    I.W. Selesnick, Interpolating multiwavelet bases and the sampling theorem. IEEE Trans. Signal Process. 47(6), 1615–1621 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  270. 270.
    I.W. Selesnick, Smooth wavelet tight frames with zero moments. Appl. Comput. Harmon. Anal. 10(2), 163–181 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  271. 271.
    I.W. Selesnick, A. Farras Abdelnour, Symmetric wavelet tight frames with two generators. Appl. Comput. Harmon. Anal. 17(2), 211–225 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  272. 272.
    I.W. Selesnick, R.G. Baraniuk, N.C. Kingsbury, The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)CrossRefGoogle Scholar
  273. 273.
    L. Sendur, I.W. Selesnick, Bivariate shrinkage with local variance estimation. IEEE Signal Process. Lett. 9(12), 438–441 (2002)CrossRefGoogle Scholar
  274. 274.
    Y. Shen, B. Han, E. Braverman, Image inpainting from partial noisy data by directional complex tight framelets. ANZIAM 58, 247–255 (2017)MathSciNetzbMATHGoogle Scholar
  275. 275.
    Y. Shen, S. Li, Q. Mo, Complex wavelets and framelets from pseudo splines. J. Fourier Anal. Appl. 16(6), 885–900 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  276. 276.
    Z. Shen, Refinable function vectors. SIAM J. Math. Anal. 29(1), 235–250 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  277. 277.
    Z. Shen, Wavelet frames and image restorations, in Proceedings of the International Congress of Mathematicians. IV (Hindustan Book Agency, New Delhi, 2010), pp. 2834–2863Google Scholar
  278. 278.
    J.-L. Starck, F. Murtagh, J.M. Fadili, Sparse Image and Signal Processing (Cambridge University Press, Cambridge, 2010)zbMATHCrossRefGoogle Scholar
  279. 279.
    E.M. Stein, R. Shakarchi, Fourier Analysis, volume 1 of Princeton Lectures in Analysis (Princeton University Press, Princeton, NJ, 2003). An IntroductionGoogle Scholar
  280. 280.
    E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, NJ, 1971)zbMATHGoogle Scholar
  281. 281.
    G. Strang, G. Fix, A Fourier analysis of the finite-element method, in Constructive Aspects of Functional Analysis (C.I.M.E., Rome, 1973), pp. 793–840zbMATHGoogle Scholar
  282. 282.
    G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Wellesley, MA, 1996)zbMATHGoogle Scholar
  283. 283.
    Q. Sun, Convergence and boundedness of cascade algorithm in Besov spaces and Triebel-Lizorkin spaces. I. Adv. Math. (China) 29(6), 507–526 (2000)Google Scholar
  284. 284.
    Q. Sun, N. Bi, D. Huang, An Introduction to Multiband Wavelets (Zhejiang University Press, China, 2001). (Chinese)Google Scholar
  285. 285.
    W. Sun, X. Zhou, Irregular wavelet/Gabor frames. Appl. Comput. Harmon. Anal. 13(1), 63–76 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  286. 286.
    W. Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  287. 287.
    M. Unser, Sampling–50 years after shannon. Proc. IEEE 88(4), 569–587 (2000)CrossRefGoogle Scholar
  288. 288.
    M. Vetterli, J. Kovačević, Wavelets and Subband Coding (Prentice Hall PTR, Englewood Cliffs, NJ, 1995)zbMATHGoogle Scholar
  289. 289.
    L.F. Villemoes, Wavelet analysis of refinement equations. SIAM J. Math. Anal. 25(5), 1433–1460 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  290. 290.
    D.F. Walnut, An Introduction to Wavelet Analysis. Applied and Numerical Harmonic Analysis (Birkhäuser Boston, Boston, MA, 2002)Google Scholar
  291. 291.
    G.G. Walter, X. Shen, Wavelets and Other Orthogonal Systems. Studies in Advanced Mathematics, 2nd edn. (Chapman & Hall/CRC, Boca Raton, FL, 2001)Google Scholar
  292. 292.
    J. Wang, Stability and linear independence associated with scaling vectors. SIAM J. Math. Anal. 29(5), 1140–1156 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  293. 293.
    Y. Wang, Two-scale dilation equations and the cascade algorithm. Random Comput. Dynam. 3(4), 289–307 (1995)MathSciNetzbMATHGoogle Scholar
  294. 294.
    M.V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software (A K Peters, Ltd., Wellesley, MA, 1994)zbMATHGoogle Scholar
  295. 295.
    P. Wojtaszczyk, A Mathematical Introduction to Wavelets, volume 37 of London Mathematical Society Student Texts (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  296. 296.
    R.A. Zalik, Riesz bases and multiresolution analyses. Appl. Comput. Harmon. Anal. 7(3), 315–331 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  297. 297.
    Z. Zhao, Directional tensor product complex tight framelets. Ph.D. thesis, Department of Mathematical and Statistical Sciences, University of Alberta, August 2015Google Scholar
  298. 298.
    D.-X. Zhou, Existence of multiple refinable distributions. Michigan Math. J. 44(2), 317–329 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  299. 299.
    D.-X. Zhou, The p-norm joint spectral radius for even integers. Methods Appl. Anal. 5(1), 39–54 (1998)MathSciNetzbMATHGoogle Scholar
  300. 300.
    D.-X. Zhou, Multiple refinable Hermite interpolants. J. Approx. Theory 102(1), 46–71 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  301. 301.
    D.-X. Zhou, Interpolatory orthogonal multiwavelets and refinable functions. IEEE Trans. Signal Process. 50(3), 520–527 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  302. 302.
    X. Zhuang, Interpolating refinable function vectors and matrix extension with symmetry. Ph.D. thesis, Department of Mathematical and Statistical Sciences, University of Alberta, July 2010Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bin Han
    • 1
  1. 1.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations