Discrete Framelet Transforms

Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Discrete wavelet/framelet transforms are the backbone of wavelet theory for its applications in a wide scope of areas. In this chapter we study algorithmic aspects and key properties of wavelets and framelets in the discrete setting. First, we introduce a standard (both one-level and multilevel) discrete framelet transform and filter banks. Then we investigate three fundamental properties of a standard discrete framelet transform: perfect reconstruction, sparsity, and stability; these properties are very much desired and crucial in successful applications of wavelets and framelets.


  1. 1.
    A. Aldroubi, Oblique and hierarchical multiwavelet bases. Appl. Comput. Harmon. Anal. 4(3), 231–263 (1997)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    A. Aldroubi, Q. Sun, W.-S. Tang, p-frames and shift invariant subspaces of L p. J. Fourier Anal. Appl. 7(1), 1–21 (2001)Google Scholar
  3. 3.
    B.K. Alpert, A class of bases in L 2 for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246–262 (1993)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    L.W. Baggett, P.E.T. Jorgensen, K.D. Merrill, J.A. Packer, Construction of Parseval wavelets from redundant filter systems. J. Math. Phys. 46(8), 083502, 28 (2005)Google Scholar
  5. 5.
    L.W. Baggett, H.A. Medina, K.D. Merrill, Generalized multi-resolution analyses and a construction procedure for all wavelet sets in R n. J. Fourier Anal. Appl. 5(6), 563–573 (1999)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    G. Battle, A block spin construction of ondelettes. I. Lemarié functions. Comm. Math. Phys. 110(4), 601–615 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Ben-Artzi, A. Ron, On the integer translates of a compactly supported function: dual bases and linear projectors. SIAM J. Math. Anal. 21(6), 1550–1562 (1990)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    J.J. Benedetto, Frames, sampling, and seizure prediction, in Advances in wavelets (Hong Kong, 1997) (Springer, Singapore, 1999), pp. 1–25Google Scholar
  9. 9.
    J.J. Benedetto, S. Li, The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5(4), 389–427 (1998)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    M.A. Berger, Y. Wang, Bounded semigroups of matrices. Linear Algebra Appl. 166, 21–27 (1992)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    G. Beylkin, R.R. Coifman, V.V. Rokhlin, Fast wavelet transforms and numerical algorithms. I. Comm. Pure Appl. Math. 44(2), 141–183 (1991)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    T. Blu, M. Unser, Approximation error for quasi-interpolators and (multi)wavelet expansions. Appl. Comput. Harmon. Anal. 6(2), 219–251 (1999)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    M. Bownik, A characterization of affine dual frames in \(L^{2}(\mathbb{R}^{n})\). Appl. Comput. Harmon. Anal. 8(2), 203–221 (2000)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    M. Bownik, The structure of shift-invariant subspaces of \(L^{2}(\mathbb{R}^{n})\). J. Funct. Anal. 177(2), 282–309 (2000)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    M. Bownik, Riesz wavelets and generalized multiresolution analyses. Appl. Comput. Harmon. Anal. 14(3), 181–194 (2003)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    O. Bratteli, P.E.T. Jorgensen, Wavelets Through a Looking Glass. Applied and Numerical Harmonic Analysis (Birkhäuser Boston, Boston, MA, 2002)Google Scholar
  17. 17.
    C.S. Burrus, R.A. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer (Prentice Hall, 1997)Google Scholar
  18. 18.
    C.A. Cabrelli, C.E. Heil, U.M. Molter, Accuracy of lattice translates of several multidimensional refinable functions. J. Approx. Theory 95(1), 5–52 (1998)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    C.A. Cabrelli, C.E. Heil, U.M. Molter, Self-similarity and multiwavelets in higher dimensions. Mem. Am. Math. Soc. 170(807), viii+82 (2004)Google Scholar
  20. 20.
    J.-F. Cai, R.H. Chan, L. Shen, Z. Shen, Restoration of chopped and nodded images by framelets. SIAM J. Sci. Comput. 30(3), 1205–1227 (2008)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    E.J. Candès, D.L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Comm. Pure Appl. Math. 57(2), 219–266 (2004)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    P.G. Casazza, G. Kutyniok, F. Philipp, Introduction to finite frame theory, in Finite Frames, Appl. Numer. Harmon. Anal. (Birkhäuser, New York, 2013), pp. 1–53Google Scholar
  23. 23.
    A.S. Cavaretta, W. Dahmen, C.A. Micchelli, Stationary subdivision. Mem. Am. Math. Soc. 93(453), vi+186 (1991)Google Scholar
  24. 24.
    R.H. Chan, S.D. Riemenschneider, L. Shen, Z. Shen, Tight frame: an efficient way for high-resolution image reconstruction. Appl. Comput. Harmon. Anal. 17(1), 91–115 (2004)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    M. Charina, C. Conti, K. Jetter, G. Zimmermann, Scalar multivariate subdivision schemes and box splines. Comput. Aided Geom. Design 28(5), 285–306 (2011)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    M. Charina, J. Stöckler, Tight wavelet frames via semi-definite programming. J. Approx. Theory 162(8), 1429–1449 (2010)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    D.-R. Chen, On linear independence of integer translates of refinable vectors. J. Math. Anal. Appl. 222(2), 397–410 (1998)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    D.-R. Chen, B. Han, S.D. Riemenschneider, Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments. Adv. Comput. Math. 13(2), 131–165 (2000)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    D.-R. Chen, R.-Q. Jia, S.D. Riemenschneider, Convergence of vector subdivision schemes in Sobolev spaces. Appl. Comput. Harmon. Anal. 12(1), 128–149 (2002)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    D.-R. Chen, G. Plonka, Convergence of cascade algorithms in Sobolev spaces for perturbed refinement masks. J. Approx. Theory 119(2), 133–155 (2002)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    D.-R. Chen, X. Zheng, Stability implies convergence of cascade algorithms in Sobolev space. J. Math. Anal. Appl. 268(1), 41–52 (2002)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    H.-L. Chen, Complex Harmonic Splines, Periodic Quasi-Wavelets (Kluwer Academic, Dordrecht, 2000)MATHCrossRefGoogle Scholar
  33. 33.
    O. Christensen, An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis (Birkhäuser Boston, Boston, MA, 2003)Google Scholar
  34. 34.
    O. Christensen, Frames and Bases: An Introductory Course. Applied and Numerical Harmonic Analysis (Birkhäuser Boston, Boston, MA, 2008)Google Scholar
  35. 35.
    C.K. Chui, An Introduction to Wavelets, volume 1 of Wavelet Analysis and Its Applications (Academic Press, Boston, MA, 1992)Google Scholar
  36. 36.
    C.K. Chui, J. de Villiers, Wavelet Subdivision Methods (CRC Press, Boca Raton, FL, 2011)MATHGoogle Scholar
  37. 37.
    C.K. Chui, B. Han, X. Zhuang, A dual-chain approach for bottom-up construction of wavelet filters with any integer dilation. Appl. Comput. Harmon. Anal. 33(2), 204–225 (2012)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    C.K. Chui, W. He, Compactly supported tight frames associated with refinable functions. Appl. Comput. Harmon. Anal. 8(3), 293–319 (2000)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    C.K. Chui, W. He, J. Stöckler, Compactly supported tight and sibling frames with maximum vanishing moments. Appl. Comput. Harmon. Anal. 13(3), 224–262 (2002)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    C.K. Chui, W. He, J. Stöckler, Nonstationary tight wavelet frames. I. Bounded intervals. Appl. Comput. Harmon. Anal. 17(2), 141–197 (2004)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    C.K. Chui, W. He, J. Stöckler, Q. Sun, Compactly supported tight affine frames with integer dilations and maximum vanishing moments. Adv. Comput. Math. 18(2–4), 159–187 (2003)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    C.K. Chui, Q. Jiang, Surface subdivision schemes generated by refinable bivariate spline function vectors. Appl. Comput. Harmon. Anal. 15(2), 147–162 (2003)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    C.K. Chui, Q. Jiang, Balanced multi-wavelets in \(\mathbb{R}^{s}\). Math. Comp. 74(251), 1323–1344 (2005)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    C.K. Chui, E. Quak, Wavelets on a bounded interval, in Numerical Methods in Approximation Theory, Vol. 9 (Oberwolfach, 1991), volume 105 of Internat. Ser. Numer. Math. (Birkhäuser, Basel, 1992), pp. 53–75Google Scholar
  45. 45.
    C.K. Chui, X.L. Shi, Inequalities of Littlewood-Paley type for frames and wavelets. SIAM J. Math. Anal. 24(1), 263–277 (1993)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    C.K. Chui, X.L. Shi, J. Stöckler, Affine frames, quasi-affine frames, and their duals. Adv. Comput. Math. 8(1–2), 1–17 (1998)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    C.K. Chui, J. Wang, On compactly supported spline wavelets and a duality principle. Trans. Am. Math. Soc. 330(2), 903–915 (1992)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    A. Cohen, Numerical Analysis of Wavelet Methods, volume 32 of Studies in Mathematics and Its Applications (North-Holland Publishing, Amsterdam, 2003)Google Scholar
  49. 49.
    A. Cohen, I. Daubechies, A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math. J. 68(2), 313–335 (1992)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    A. Cohen, I. Daubechies, Orthonormal bases of compactly supported wavelets. III. Better frequency resolution. SIAM J. Math. Anal. 24(2), 520–527 (1993)MATHCrossRefGoogle Scholar
  51. 51.
    A. Cohen, I. Daubechies, A new technique to estimate the regularity of refinable functions. Rev. Mat. Iberoamericana 12(2), 527–591 (1996)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    A. Cohen, I. Daubechies, J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45(5), 485–560 (1992)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    A. Cohen, I. Daubechies, G. Plonka, Regularity of refinable function vectors. J. Fourier Anal. Appl. 3(3), 295–324 (1997)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    A. Cohen, I. Daubechies, P. Vial, Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1(1), 54–81 (1993)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    A. Cohen, K. Gröchenig, L.F. Villemoes, Regularity of multivariate refinable functions. Constr. Approx. 15(2), 241–255 (1999)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    A. Cohen, R.D. Ryan, Wavelets and Multiscale Signal Processing, volume 11 of Applied Mathematics and Mathematical Computation (Chapman & Hall, London, 1995). Revised version of Cohen’s doctoral thesis in 1992, Translated from the French by RyanGoogle Scholar
  57. 57.
    A. Cohen, Q. Sun, An arithmetic characterization of the conjugate quadrature filters associated to orthonormal wavelet bases. SIAM J. Math. Anal. 24(5), 1355–1360 (1993)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    R.R. Coifman, D.L. Donoho, Translation invariant de-noising, in Wavelets and Statistics (Springer, New York, 1995), pp. 125–150MATHGoogle Scholar
  59. 59.
    R.R. Coifman, M. Maggioni, Diffusion wavelets. Appl. Comput. Harmon. Anal. 21(1), 53–94 (2006)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    R.R. Coifman, Y. Meyer, M.V. Wickerhauser, Size properties of wavelet-packets, in Wavelets and Their Applications, pp. 453–470 (Jones and Bartlett, Boston, MA, 1992)Google Scholar
  61. 61.
    C. Conti, M. Cotronei, T. Sauer, Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution. J. Comput. Appl. Math. 233(7), 1649–1659 (2010)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    S. Dahlke, K. Gröchenig, P. Maass, A new approach to interpolating scaling functions. Appl. Anal. 72(3–4), 485–500 (1999)MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2(4), 341–361 (1996)MathSciNetMATHGoogle Scholar
  64. 64.
    W. Dahmen, Multiscale and wavelet methods for operator equations, in Multiscale Problems and Methods in Numerical Simulations, volume 1825 of Lecture Notes in Math. (Springer, Berlin, 2003), pp. 31–96Google Scholar
  65. 65.
    W. Dahmen, B. Han, R.-Q. Jia, A. Kunoth, Biorthogonal multiwavelets on the interval: cubic Hermite splines. Constr. Approx. 16(2), 221–259 (2000)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    W. Dahmen, A. Kunoth, K. Urban, Biorthogonal spline wavelets on the interval—stability and moment conditions. Appl. Comput. Harmon. Anal. 6(2), 132–196 (1999)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    X.-R. Dai, Q. Sun, Z. Zhang, Compactly supported both m and n refinable distributions. East J. Approx. 6(2), 201–209 (2000)MathSciNetMATHGoogle Scholar
  68. 68.
    I. Daubechies, Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41(7), 909–996 (1988)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    I. Daubechies, The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36(5), 961–1005 (1990)MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    I. Daubechies, Ten Lectures on Wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992)Google Scholar
  71. 71.
    I. Daubechies, Orthonormal bases of compactly supported wavelets. II. Variations on a theme. SIAM J. Math. Anal. 24(2), 499–519 (1993)MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    I. Daubechies, B. Han, Pairs of dual wavelet frames from any two refinable functions. Constr. Approx. 20(3), 325–352 (2004)MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14(1), 1–46 (2003)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    I. Daubechies, Y. Huang, How does truncation of the mask affect a refinable function? Constr. Approx. 11(3), 365–380 (1995)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    I. Daubechies, J.C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions. SIAM J. Math. Anal. 22(5), 1388–1410 (1991)MATHCrossRefGoogle Scholar
  77. 77.
    I. Daubechies, J.C. Lagarias, Sets of matrices all infinite products of which converge. Linear Algebra Appl. 161, 227–263 (1992)MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    I. Daubechies, J.C. Lagarias, Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23(4), 1031–1079 (1992)Google Scholar
  79. 79.
    I. Daubechies, J.C. Lagarias, On the thermodynamic formalism for multifractal functions. Rev. Math. Phys. 6(5A), 1033–1070 (1994)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    C. de Boor, R.A. DeVore, A. Ron, Approximation from shift-invariant subspaces of \(L_{2}(\mathbb{R}^{d})\). Trans. Am. Math. Soc. 341(2), 787–806 (1994)MATHGoogle Scholar
  81. 81.
    C. de Boor, R.A. DeVore, A. Ron, The structure of finitely generated shift-invariant spaces in L 2(R d). J. Funct. Anal. 119(1), 37–78 (1994)MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes. Constr. Approx. 5(1), 49–68 (1989)MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    R.A. DeVore, Nonlinear approximation, in Acta Numerica, 1998, volume 7 of Acta Numer. (Cambridge Univ. Press, Cambridge, 1998), pp. 51–150Google Scholar
  84. 84.
    M.N. Do, M. Vetterli, Contourlets, in Beyond Wavelets, volume 10 of Stud. Comput. Math. (Academic Press/Elsevier, San Diego, CA, 2003), pp. 83–105Google Scholar
  85. 85.
    B. Dong, Z. Shen, Construction of biorthogonal wavelets from pseudo-splines. J. Approx. Theory 138(2), 211–231 (2006)MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets. Appl. Comput. Harmon. Anal. 22(1), 78–104 (2007)MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    B. Dong, Z. Shen, MRA-based wavelet frames and applications, in Mathematics in Image Processing, volume 19 of IAS/Park City Math. Ser. (Amer. Math. Soc., Providence, RI, 2013), pp. 9–158Google Scholar
  88. 88.
    G.C. Donovan, J.S. Geronimo, D.P. Hardin, Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30(5), 1029–1056 (1999)MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    G.C. Donovan, J.S. Geronimo, D.P. Hardin, P.R. Massopust, Construction of orthogonal wavelets using fractal interpolation functions. SIAM J. Math. Anal. 27(4), 1158–1192 (1996)MathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    S. Dubuc, Interpolation through an iterative scheme. J. Math. Anal. Appl. 114(1), 185–204 (1986)MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    S. Dubuc, J.-L. Merrien, Convergent vector and Hermite subdivision schemes. Constr. Approx. 23(1), 1–22 (2006)MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    R.J. Duffin, A.C. Schaeffer, A class of nonharmonic fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    N. Dyn, J.A. Gregory, D. Levin, A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graphics 9, 160–169 (1990)MATHCrossRefGoogle Scholar
  94. 94.
    N. Dyn, K. Hormann, M.A. Sabin, Z. Shen, Polynomial reproduction by symmetric subdivision schemes. J. Approx. Theory 155(1), 28–42 (2008)MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    N. Dyn, D. Levin, Analysis of Hermite-type subdivision schemes, in Approximation Theory VIII, Vol. 2 (College Station, TX, 1995), volume 6 of Ser. Approx. Decompos. (World Sci. Publ., River Edge, NJ, 1995), pp. 117–124Google Scholar
  96. 96.
    N. Dyn, D. Levin, Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    N. Dyn, D. Levin, J.A. Gregory, A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Design 4(4), 257–268 (1987)MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    R.E. Edwards, Fourier Series. A Modern Introduction. Vol. 1, volume 64 of Graduate Texts in Mathematics, 2nd edn. (Springer, New York/Berlin, 1979)Google Scholar
  99. 99.
    M. Ehler, On multivariate compactly supported bi-frames. J. Fourier Anal. Appl. 13(5), 511–532 (2007)MathSciNetMATHCrossRefGoogle Scholar
  100. 100.
    M. Ehler, B. Han, Wavelet bi-frames with few generators from multivariate refinable functions. Appl. Comput. Harmon. Anal. 25(3), 407–414 (2008)MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    T. Eirola, Sobolev characterization of solutions of dilation equations. SIAM J. Math. Anal. 23(4), 1015–1030 (1992)MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    H.G. Feichtinger, K.H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86(2), 307–340 (1989)MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    G.B. Folland, Real Analysis. Pure and Applied Mathematics (New York), 2nd edn. (Wiley, New York, 1999). Modern Techniques and Their Applications, A Wiley-Interscience PublicationGoogle Scholar
  104. 104.
    M. Frazier, G. Garrigós, K. Wang, G. Weiss, A characterization of functions that generate wavelet and related expansion. J. Fourier Anal. Appl. 3, 883–906 (1997)MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    M. Frazier, B. Jawerth, G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, volume 79 of CBMS Regional Conference Series in Mathematics (The American Mathematical Society, Providence, RI, 1991)MATHCrossRefGoogle Scholar
  106. 106.
    J.-P. Gabardo, D. Han, Frames associated with measurable spaces. Adv. Comput. Math. 18(2–4), 127–147 (2003)MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    J.S. Geronimo, D.P. Hardin, P.R. Massopust, Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78(3), 373–401 (1994)MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    S.S. Goh, B. Han, Z. Shen, Tight periodic wavelet frames and approximation orders. Appl. Comput. Harmon. Anal. 31(2), 228–248 (2011)MathSciNetMATHCrossRefGoogle Scholar
  109. 109.
    S.S. Goh, S.L. Lee, K.-M. Teo, Multidimensional periodic multiwavelets. J. Approx. Theory 98(1), 72–103 (1999)MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    S.S. Goh, Z.Y. Lim, Z. Shen, Symmetric and antisymmetric tight wavelet frames. Appl. Comput. Harmon. Anal. 20(3), 411–421 (2006)MathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    T.N.T. Goodman, A class of orthogonal refinable functions and wavelets. Constr. Approx. 19(4), 525–540 (2003)MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    T.N.T. Goodman, R.-Q. Jia, D.-X. Zhou, Local linear independence of refinable vectors of functions. Proc. Roy. Soc. Edinburgh Sect. A 130(4), 813–826 (2000)MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    T.N.T. Goodman, S.L. Lee, Wavelets of multiplicity r. Trans. Am. Math. Soc. 342(1), 307–324 (1994)Google Scholar
  114. 114.
    T.N.T. Goodman, S.L. Lee, W.-S. Tang, Wavelets in wandering subspaces. Trans. Am. Math. Soc. 338(2), 639–654 (1993)MathSciNetMATHCrossRefGoogle Scholar
  115. 115.
    L. Grafakos, Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, 3rd edn. (Springer, New York, 2014)Google Scholar
  116. 116.
    A. Grossmann, J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    N. Guglielmi, V. Protasov, Exact computation of joint spectral characteristics of linear operators. Found. Comput. Math. 13(1), 37–97 (2013)MathSciNetMATHCrossRefGoogle Scholar
  118. 118.
    K. Guo, G. Kutyniok, D. Labate, Sparse multidimensional representations using anisotropic dilation and shear operators, in Wavelets and Splines: Athens 2005. Mod. Methods Math. (Nashboro Press, Brentwood, TN, 2006), pp. 189–201Google Scholar
  119. 119.
    K. Guo, D. Labate, Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007)MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    A. Haar, Zur theorie der orthogonalen funktionen-systeme. Math. Ann. 69, 331–371 (1910)MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    B. Han, Wavelets. Master’s thesis, Institute of Mathematics, Chinese Academy of Sciences, June 1994Google Scholar
  122. 122.
    B. Han, Some applications of projection operators in wavelets. Acta Math. Sinica (N.S.) 11(1), 105–112 (1995)Google Scholar
  123. 123.
    B. Han, On dual wavelet tight frames. Appl. Comput. Harmon. Anal. 4(4), 380–413 (1997)MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    B. Han, Subdivision schemes, biorthogonal wavelets and image compression. PhD thesis, Department of Mathematical Sciences, University of Alberta, July 1998Google Scholar
  125. 125.
    B. Han, Symmetric orthonormal scaling functions and wavelets with dilation factor 4. Adv. Comput. Math. 8(3), 221–247 (1998)MathSciNetMATHCrossRefGoogle Scholar
  126. 126.
    B. Han, Analysis and construction of optimal multivariate biorthogonal wavelets with compact support. SIAM J. Math. Anal. 31(2), 274–304 (2000)MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J. Approx. Theory 110(1), 18–53 (2001)MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    B. Han, Projectable multivariate refinable functions and biorthogonal wavelets. Appl. Comput. Harmon. Anal. 13(1), 89–102 (2002)MathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    B. Han, Classification and construction of bivariate subdivision schemes, in Curve and Surface Fitting (Saint-Malo, 2002). Mod. Methods Math. (Nashboro Press, Brentwood, TN, 2003), pp. 187–197Google Scholar
  130. 130.
    B. Han, Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J. Comput. Appl. Math. 155(1), 43–67 (2003)MathSciNetMATHCrossRefGoogle Scholar
  131. 131.
    B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl. 24(3), 693–714 (2003)MathSciNetMATHCrossRefGoogle Scholar
  132. 132.
    B. Han, Vector cascade algorithms and refinable function vectors in Sobolev spaces. J. Approx. Theory 124(1), 44–88 (2003)MathSciNetMATHCrossRefGoogle Scholar
  133. 133.
    B. Han, Symmetric multivariate orthogonal refinable functions. Appl. Comput. Harmon. Anal. 17(3), 277–292 (2004)MathSciNetMATHCrossRefGoogle Scholar
  134. 134.
    B. Han, Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix. Adv. Comput. Math. 24(1–4), 375–403 (2006)MathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    B. Han, Refinable functions and cascade algorithms in weighted spaces with Hölder continuous masks. SIAM J. Math. Anal. 40(1), 70–102 (2008)MathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    B. Han, Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26(1), 14–42 (2009)MathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    B. Han, Matrix extension with symmetry and applications to symmetric orthonormal complex M-wavelets. J. Fourier Anal. Appl. 15(5), 684–705 (2009)MathSciNetMATHCrossRefGoogle Scholar
  138. 138.
    B. Han, Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. Appl. Comput. Harmon. Anal. 29(3), 330–353 (2010)MathSciNetMATHCrossRefGoogle Scholar
  139. 139.
    B. Han, The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets. Math. Comp. 79(270), 917–951 (2010)MathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    B. Han, Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules. Adv. Comput. Math. 32(2), 209–237 (2010)MathSciNetMATHCrossRefGoogle Scholar
  141. 141.
    B. Han, Symmetric orthogonal filters and wavelets with linear-phase moments. J. Comput. Appl. Math. 236(4), 482–503 (2011)MathSciNetMATHCrossRefGoogle Scholar
  142. 142.
    B. Han, Nonhomogeneous wavelet systems in high dimensions. Appl. Comput. Harmon. Anal. 32(2), 169–196 (2012)MathSciNetMATHCrossRefGoogle Scholar
  143. 143.
    B. Han, Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters. Appl. Comput. Harmon. Anal. 35(2), 200–227 (2013)MathSciNetMATHCrossRefGoogle Scholar
  144. 144.
    B. Han, Properties of discrete framelet transforms. Math. Model. Nat. Phenom. 8(1), 18–47 (2013)MathSciNetMATHCrossRefGoogle Scholar
  145. 145.
    B. Han, The projection method for multidimensional framelet and wavelet analysis. Math. Model. Nat. Phenom. 9(5), 83–110 (2014)MathSciNetMATHCrossRefGoogle Scholar
  146. 146.
    B. Han, Symmetric tight framelet filter banks with three high-pass filters. Appl. Comput. Harmon. Anal. 37(1), 140–161 (2014)MathSciNetMATHCrossRefGoogle Scholar
  147. 147.
    B. Han, Algorithm for constructing symmetric dual framelet filter banks. Math. Comp. 84(292), 767–801 (2015)MathSciNetMATHCrossRefGoogle Scholar
  148. 148.
    B. Han, On linear independence of integer shifts of compactly supported distributions. J. Approx. Theory 201, 1–6 (2016)MathSciNetMATHCrossRefGoogle Scholar
  149. 149.
    B. Han, R.-Q. Jia, Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29(5), 1177–1199 (1998)MathSciNetMATHCrossRefGoogle Scholar
  150. 150.
    B. Han, R.-Q. Jia, Optimal interpolatory subdivision schemes in multidimensional spaces. SIAM J. Numer. Anal. 36(1), 105–124 (1999)MathSciNetMATHCrossRefGoogle Scholar
  151. 151.
    B. Han, R.-Q. Jia, Quincunx fundamental refinable functions and quincunx biorthogonal wavelets. Math. Comp. 71(237), 165–196 (2002)MathSciNetMATHCrossRefGoogle Scholar
  152. 152.
    B. Han, R.-Q. Jia, Optimal C 2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils. Math. Comp. 75(255), 1287–1308 (2006)MathSciNetMATHCrossRefGoogle Scholar
  153. 153.
    B. Han, Q. Jiang, Multiwavelets on the interval. Appl. Comput. Harmon. Anal. 12(1), 100–127 (2002)MathSciNetMATHCrossRefGoogle Scholar
  154. 154.
    B. Han, Q. Jiang, Z. Shen, X. Zhuang, Symmetric canonical quincunx tight framelets with high vanishing moments and smoothness. Math. Comp. 87, 347–379 (2018)MathSciNetMATHCrossRefGoogle Scholar
  155. 155.
    B. Han, S.-G. Kwon, S.S. Park, Riesz multiwavelet bases. Appl. Comput. Harmon. Anal. 20(2), 161–183 (2006)MathSciNetMATHCrossRefGoogle Scholar
  156. 156.
    B. Han, S.-G. Kwon, X. Zhuang, Generalized interpolating refinable function vectors. J. Comput. Appl. Math. 227(2), 254–270 (2009)MathSciNetMATHCrossRefGoogle Scholar
  157. 157.
    B. Han, Q. Mo, Multiwavelet frames from refinable function vectors. Adv. Comput. Math. 18(2–4), 211–245 (2003)MathSciNetMATHCrossRefGoogle Scholar
  158. 158.
    B. Han, Q. Mo, Splitting a matrix of Laurent polynomials with symmetry and its application to symmetric framelet filter banks. SIAM J. Matrix Anal. Appl. 26(1), 97–124 (2004)MathSciNetMATHCrossRefGoogle Scholar
  159. 159.
    B. Han, Q. Mo, Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Appl. Comput. Harmon. Anal. 18(1), 67–93 (2005)MathSciNetMATHCrossRefGoogle Scholar
  160. 160.
    B. Han, Q. Mo, Analysis of optimal bivariate symmetric refinable Hermite interpolants. Commun. Pure Appl. Anal. 6(3), 689–718 (2007)MathSciNetMATHCrossRefGoogle Scholar
  161. 161.
    B. Han, Q. Mo, Z. Zhao, Compactly supported tensor product complex tight framelets with directionality. SIAM J. Math. Anal. 47(3), 2464–2494 (2015)MathSciNetMATHCrossRefGoogle Scholar
  162. 162.
    B. Han, Q. Mo, Z. Zhao, X. Zhuang, Construction and applications of compactly supported directional complex tight framelets. Preprint, 2016.Google Scholar
  163. 163.
    B. Han, Z. Shen, Wavelets with short support. SIAM J. Math. Anal. 38(2), 530–556 (2006)MathSciNetMATHCrossRefGoogle Scholar
  164. 164.
    B. Han, Z. Shen, Compactly supported symmetric C wavelets with spectral approximation order. SIAM J. Math. Anal. 40(3), 905–938 (2008)MathSciNetMATHCrossRefGoogle Scholar
  165. 165.
    B. Han, Z. Shen, Dual wavelet frames and Riesz bases in Sobolev spaces. Constr. Approx. 29(3), 369–406 (2009)MathSciNetMATHCrossRefGoogle Scholar
  166. 166.
    B. Han, T.P.-Y. Yu, B. Piper, Multivariate refinable Hermite interpolant. Math. Comp. 73(248), 1913–1935 (2004)MathSciNetMATHCrossRefGoogle Scholar
  167. 167.
    B. Han, Z. Zhao, Tensor product complex tight framelets with increasing directionality. SIAM J. Imaging Sci. 7(2), 997–1034 (2014)MathSciNetMATHCrossRefGoogle Scholar
  168. 168.
    B. Han, Z. Zhao, X. Zhuang, Directional tensor product complex tight framelets with low redundancy. Appl. Comput. Harmon. Anal. 41(2), 603–637 (2016)MathSciNetMATHCrossRefGoogle Scholar
  169. 169.
    B. Han, X. Zhuang, Smooth affine shear tight frames with mra structure. Appl. Comput. Harmon. Anal. 39(2), 300–338 (2015)MathSciNetMATHCrossRefGoogle Scholar
  170. 170.
    D. Han, K. Kornelson, D.R. Larson, E. Weber, Frames for Undergraduates, volume 40 of Student Mathematical Library (American Mathematical Society, Providence, RI, 2007)MATHGoogle Scholar
  171. 171.
    D. Han, D.R. Larson, Frames, bases and group representations. Mem. Am. Math. Soc. 147(697), x+94 (2000)Google Scholar
  172. 172.
    D.P. Hardin, T.A. Hogan, Q. Sun, The matrix-valued Riesz lemma and local orthonormal bases in shift-invariant spaces. Adv. Comput. Math. 20(4), 367–384 (2004)MathSciNetMATHCrossRefGoogle Scholar
  173. 173.
    D.P. Hardin, J.A. Marasovich, Biorthogonal multiwavelets on [−1, 1]. Appl. Comput. Harmon. Anal. 7(1), 34–53 (1999)Google Scholar
  174. 174.
    M.F. Hassan, I.P. Ivrissimitzis, N.A. Dodgson, M.A. Sabin, An interpolating 4-point C 2 ternary stationary subdivision scheme. Comput. Aided Geom. Design 19(1), 1–18 (2002)MathSciNetMATHCrossRefGoogle Scholar
  175. 175.
    C.E. Heil, What is a frame? Notices Am. Math. Soc. 60(6), 748–750 (2013)MathSciNetMATHCrossRefGoogle Scholar
  176. 176.
    C.E. Heil, D. Colella, Matrix refinement equations: existence and uniqueness. J. Fourier Anal. Appl. 2(4), 363–377 (1996)MathSciNetMATHGoogle Scholar
  177. 177.
    C.E. Heil, G. Strang, V. Strela, Approximation by translates of refinable functions. Numer. Math. 73(1), 75–94 (1996)MathSciNetMATHCrossRefGoogle Scholar
  178. 178.
    C.E. Heil, D.F. Walnut, Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–666 (1989)MathSciNetMATHCrossRefGoogle Scholar
  179. 179.
    E. Hernández, G. Weiss, A First Course on Wavelets. Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1996)Google Scholar
  180. 180.
    L. Hervé, Multi-resolution analysis of multiplicity d: applications to dyadic interpolation. Appl. Comput. Harmon. Anal. 1(4), 299–315 (1994)MathSciNetMATHCrossRefGoogle Scholar
  181. 181.
    M. Holschneider, R. Kronland-Martinet, J. Morlet, P. Tchamitchian. A real-time algorithm for signal analysis with the help of the wavelet transform, in Wavelets (Marseille, 1987). Inverse Probl. Theoret. Imaging (Springer, Berlin, 1989), pp. 286–297Google Scholar
  182. 182.
    S. Jaffard, Y. Meyer, Wavelet methods for pointwise regularity and local oscillations of functions. Mem. Am. Math. Soc. 123(587), x+110 (1996)Google Scholar
  183. 183.
    S. Jaffard, Y. Meyer, R.D. Ryan, Wavelets, revised edn. (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001)Google Scholar
  184. 184.
    K. Jetter, G. Plonka, A survey on L 2-approximation orders from shift-invariant spaces, in Multivariate Approximation and Applications (Cambridge Univ. Press, Cambridge, 2001), pp. 73–111MATHGoogle Scholar
  185. 185.
    K. Jetter, D.-X. Zhou, Order of linear approximation from shift-invariant spaces. Constr. Approx. 11(4), 423–438 (1995)MathSciNetMATHCrossRefGoogle Scholar
  186. 186.
    K. Jetter, D.-X. Zhou, Approximation order of linear operators and finitely generated shift-invariant spaces. preprint, 1998Google Scholar
  187. 187.
    R.-Q. Jia, Subdivision schemes in L p spaces. Adv. Comput. Math. 3(4), 309–341 (1995)MathSciNetMATHCrossRefGoogle Scholar
  188. 188.
    R.Q. Jia, The Toeplitz theorem and its applications to approximation theory and linear PDEs. Trans. Am. Math. Soc. 347(7), 2585–2594 (1995)MathSciNetMATHGoogle Scholar
  189. 189.
    R.-Q. Jia, Shift-invariant spaces on the real line. Proc. Am. Math. Soc. 125(3), 785–793 (1997)MathSciNetMATHCrossRefGoogle Scholar
  190. 190.
    R.-Q. Jia, Approximation properties of multivariate wavelets. Math. Comp. 67(222), 647–665 (1998)MathSciNetMATHCrossRefGoogle Scholar
  191. 191.
    R.-Q. Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces. Trans. Am. Math. Soc. 351(10), 4089–4112 (1999)MathSciNetMATHCrossRefGoogle Scholar
  192. 192.
    R.-Q. Jia, Approximation with scaled shift-invariant spaces by means of quasi-projection operators. J. Approx. Theory 131(1), 30–46 (2004)MathSciNetMATHCrossRefGoogle Scholar
  193. 193.
    R.-Q. Jia, Bessel sequences in Sobolev spaces. Appl. Comput. Harmon. Anal. 20(2), 298–311 (2006)MathSciNetMATHCrossRefGoogle Scholar
  194. 194.
    R.-Q. Jia, Q. Jiang, Approximation power of refinable vectors of functions, in Wavelet Analysis and Applications (Guangzhou, 1999), volume 25 of AMS/IP Stud. Adv. Math. (Amer. Math. Soc., Providence, RI, 2002), pp. 155–178Google Scholar
  195. 195.
    R.-Q. Jia, Q. Jiang, Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24(4), 1071–1109 (2003)MathSciNetMATHCrossRefGoogle Scholar
  196. 196.
    R.-Q. Jia, Q. Jiang, S.L. Lee, Convergence of cascade algorithms in Sobolev spaces and integrals of wavelets. Numer. Math. 91(3), 453–473 (2002)MathSciNetMATHCrossRefGoogle Scholar
  197. 197.
    R.-Q. Jia, Q. Jiang, Z. Shen, Distributional solutions of nonhomogeneous discrete and continuous refinement equations. SIAM J. Math. Anal. 32(2), 420–434 (2000)MathSciNetMATHCrossRefGoogle Scholar
  198. 198.
    R.-Q. Jia, K.-S. Lau, D.-X. Zhou, L p solutions of refinement equations. J. Fourier Anal. Appl. 7(2), 143–167 (2001)MathSciNetMATHCrossRefGoogle Scholar
  199. 199.
    R.-Q. Jia, S. Li, Refinable functions with exponential decay: an approach via cascade algorithms. J. Fourier Anal. Appl. 17(5), 1008–1034 (2011)MathSciNetMATHCrossRefGoogle Scholar
  200. 200.
    R.-Q. Jia, C.A. Micchelli, Using the refinement equations for the construction of pre-wavelets. II. Powers of two, in Curves and Surfaces (Chamonix-Mont-Blanc, 1990) (Academic Press, Boston, MA, 1991), pp. 209–246Google Scholar
  201. 201.
    R.-Q. Jia, C.A. Micchelli, On linear independence for integer translates of a finite number of functions. Proc. Edinburgh Math. Soc. (2) 36(1), 69–85 (1993)Google Scholar
  202. 202.
    R.-Q. Jia, S.D. Riemenschneider, D.-X. Zhou, Approximation by multiple refinable functions. Can. J. Math. 49(5), 944–962 (1997)MathSciNetMATHCrossRefGoogle Scholar
  203. 203.
    R.-Q. Jia, S.D. Riemenschneider, D.-X. Zhou, Vector subdivision schemes and multiple wavelets. Math. Comp. 67(224), 1533–1563 (1998)MathSciNetMATHCrossRefGoogle Scholar
  204. 204.
    R.-Q. Jia, S.D. Riemenschneider, D.-X. Zhou, Smoothness of multiple refinable functions and multiple wavelets. SIAM J. Matrix Anal. Appl. 21(1), 1–28 (1999)MathSciNetMATHCrossRefGoogle Scholar
  205. 205.
    R.-Q. Jia, Z. Shen, Multiresolution and wavelets. Proc. Edinburgh Math. Soc. (2) 37(2), 271–300 (1994)Google Scholar
  206. 206.
    R.-Q. Jia, J. Wang, Stability and linear independence associated with wavelet decompositions. Proc. Am. Math. Soc. 117(4), 1115–1124 (1993)MathSciNetMATHCrossRefGoogle Scholar
  207. 207.
    R.-Q. Jia, J. Wang, D.-X. Zhou, Compactly supported wavelet bases for Sobolev spaces. Appl. Comput. Harmon. Anal. 15(3), 224–241 (2003)MathSciNetMATHCrossRefGoogle Scholar
  208. 208.
    Q. Jiang, On the regularity of matrix refinable functions. SIAM J. Math. Anal. 29(5), 1157–1176 (1998)MathSciNetMATHCrossRefGoogle Scholar
  209. 209.
    Q. Jiang, Multivariate matrix refinable functions with arbitrary matrix dilation. Trans. Am. Math. Soc. 351(6), 2407–2438 (1999)MathSciNetMATHCrossRefGoogle Scholar
  210. 210.
    Q. Jiang, Parameterizations of masks for tight affine frames with two symmetric/antisymmetric generators. Adv. Comput. Math. 18(2–4), 247–268 (2003)MathSciNetMATHCrossRefGoogle Scholar
  211. 211.
    Q. Jiang, P. Oswald, S.D. Riemenschneider, \(\sqrt{3}\)-subdivision schemes: maximal sum rule orders. Constr. Approx. 19(3), 437–463 (2003)Google Scholar
  212. 212.
    F. Keinert, Raising multiwavelet approximation order through lifting. SIAM J. Math. Anal. 32(5), 1032–1049 (2001)MathSciNetMATHCrossRefGoogle Scholar
  213. 213.
    F. Keinert, Wavelets and Multiwavelets. Studies in Advanced Mathematics (Chapman & Hall/CRC, Boca Raton, FL, 2004)Google Scholar
  214. 214.
    A.V. Krivoshein, M.A. Skopina, Approximation by frame-like wavelet systems. Appl. Comput. Harmon. Anal. 31(3), 410–428 (2011)MathSciNetMATHCrossRefGoogle Scholar
  215. 215.
    G. Kutyniok, W.-Q. Lim, Compactly supported shearlets are optimally sparse. J. Approx. Theory 163(11), 1564–1589 (2011)MathSciNetMATHCrossRefGoogle Scholar
  216. 216.
    G. Kutyniok, M. Shahram, X. Zhuang, ShearLab: a rational design of a digital parabolic scaling algorithm. SIAM J. Imaging Sci. 5(4), 1291–1332 (2012)MathSciNetMATHCrossRefGoogle Scholar
  217. 217.
    D. Labate, G. Weiss, E. Wilson, Wavelets. Notices Am. Math. Soc. 60(1), 66–76 (2013)CrossRefGoogle Scholar
  218. 218.
    M.-J. Lai, A. Petukhov, Method of virtual components for constructing redundant filter banks and wavelet frames. Appl. Comput. Harmon. Anal. 22(3), 304–318 (2007)MathSciNetMATHCrossRefGoogle Scholar
  219. 219.
    M.-J. Lai, D.W. Roach, Parameterizations of univariate orthogonal wavelets with short support, in Approximation Theory, X (St. Louis, MO, 2001). Innov. Appl. Math. (Vanderbilt Univ. Press, Nashville, TN, 2002), pp. 369–384Google Scholar
  220. 220.
    D. Langemann, J. Prestin, Multivariate periodic wavelet analysis. Appl. Comput. Harmon. Anal. 28(1), 46–66 (2010)MathSciNetMATHCrossRefGoogle Scholar
  221. 221.
    W.M. Lawton, Tight frames of compactly supported affine wavelets. J. Math. Phys. 31(8), 1898–1901 (1990)MathSciNetMATHCrossRefGoogle Scholar
  222. 222.
    W.M. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelet bases. J. Math. Phys. 32(1), 57–61 (1991)MathSciNetMATHCrossRefGoogle Scholar
  223. 223.
    W.M. Lawton, Applications of complex valued wavelet transforms to subband decomposition. IEEE Trans. Signal Process. 41(12), 3566–3568 (1993)MATHCrossRefGoogle Scholar
  224. 224.
    W.M. Lawton, S.L. Lee, Z. Shen, Characterization of compactly supported refinable splines. Adv. Comput. Math. 3(1–2), 137–145 (1995)MathSciNetMATHCrossRefGoogle Scholar
  225. 225.
    W.M. Lawton, S.L. Lee, Z. Shen, Stability and orthonormality of multivariate refinable functions. SIAM J. Math. Anal. 28(4), 999–1014 (1997)MathSciNetMATHCrossRefGoogle Scholar
  226. 226.
    J. Lebrun, M. Vetterli, Balanced multiwavelets theory and design. IEEE Trans. Signal Process. 46(4), 1119–1125 (1998)MathSciNetMATHCrossRefGoogle Scholar
  227. 227.
    P.G. Lemarié, Ondelettes à localisation exponentielle. J. Math. Pures Appl. (9) 67(3), 227–236 (1988)Google Scholar
  228. 228.
    P.G. Lemarié, Fonctions à support compact dans les analyses multi-résolutions. Rev. Mat. Iberoamericana 7(2), 157–182 (1991)MathSciNetMATHCrossRefGoogle Scholar
  229. 229.
    P.G. Lemarié-Rieusset, On the existence of compactly supported dual wavelets. Appl. Comput. Harmon. Anal. 4(1), 117–118 (1997)MathSciNetMATHCrossRefGoogle Scholar
  230. 230.
    B. Li, L. Peng, Parametrization for balanced multifilter banks. Int. J. Wavelets Multiresolut. Inf. Process. 6(4), 617–629 (2008)MathSciNetMATHCrossRefGoogle Scholar
  231. 231.
    S. Li, Convergence rates of vector cascade algorithms in L p. J. Approx. Theory 137(1), 123–142 (2005)MathSciNetMATHCrossRefGoogle Scholar
  232. 232.
    S. Li, J. Xian, Biorthogonal multiple wavelets generated by vector refinement equation. Sci. China Ser. A 50(7), 1015–1025 (2007)MathSciNetMATHCrossRefGoogle Scholar
  233. 233.
    J.-M. Lina, M. Mayrand, Complex Daubechies wavelets. Appl. Comput. Harmon. Anal. 2(3), 219–229 (1995)MathSciNetMATHCrossRefGoogle Scholar
  234. 234.
    R.-L. Long, High Dimensional Wavelet Analysis (World Publishing, Singapore, 1995) (Chinese)Google Scholar
  235. 235.
    R.-L. Long, D.-R. Chen, Biorthogonal wavelet bases on \(\mathbb{R}^{d}\). Appl. Comput. Harmon. Anal. 2(3), 230–242 (1995)MathSciNetMATHCrossRefGoogle Scholar
  236. 236.
    R.-L. Long, W. Chen, S. Yuan, Wavelets generated by vector multiresolution analysis. Appl. Comput. Harmon. Anal. 4(3), 317–350 (1997)MathSciNetMATHCrossRefGoogle Scholar
  237. 237.
    R.-L. Long, Q. Mo, L 2-convergence of vector cascade algorithm. Approx. Theory Appl. (N.S.) 15(4), 29–49 (1999)Google Scholar
  238. 238.
    J. MacArthur, K.F. Taylor, Wavelets with crystal symmetry shifts. J. Fourier Anal. Appl. 17(6), 1109–1118 (2011)MathSciNetMATHCrossRefGoogle Scholar
  239. 239.
    S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L 2(R). Trans. Am. Math. Soc. 315(1), 69–87 (1989)MathSciNetMATHGoogle Scholar
  240. 240.
    S.G. Mallat, A Wavelet Tour of Signal Processing, 3rd edn. (Elsevier/Academic Press, Amsterdam, 2009)MATHGoogle Scholar
  241. 241.
    J.-L. Merrien, A family of Hermite interpolants by bisection algorithms. Numer. Algorithms 2(2), 187–200 (1992)MathSciNetMATHCrossRefGoogle Scholar
  242. 242.
    Y. Meyer, Ondelettes et opérateurs. I, II, and III. Actualités Mathématiques (Hermann, Paris, 1990)Google Scholar
  243. 243.
    Y. Meyer, Ondelettes sur l’intervalle. Rev. Mat. Iberoamericana 7(2), 115–133 (1991)MathSciNetMATHCrossRefGoogle Scholar
  244. 244.
    C.A. Micchelli, H. Prautzsch, Uniform refinement of curves. Linear Algebra Appl. 114/115, 841–870 (1989)Google Scholar
  245. 245.
    C.A. Micchelli, T. Sauer, Regularity of multiwavelets. Adv. Comput. Math. 7(4), 455–545 (1997)MathSciNetMATHCrossRefGoogle Scholar
  246. 246.
    C.A. Micchelli, T. Sauer, On vector subdivision. Math. Z. 229(4), 621–674 (1998)MathSciNetMATHCrossRefGoogle Scholar
  247. 247.
    C.A. Micchelli, Y. Xu, Using the matrix refinement equation for the construction of wavelets on invariant sets. Appl. Comput. Harmon. Anal. 1(4), 391–401 (1994)MathSciNetMATHCrossRefGoogle Scholar
  248. 248.
    Q. Mo, Compactly supported symmetry MRA wavelet frames. Ph.D. thesis, Department of Mathematical and Statistical Sciences, University of Alberta, August 2003Google Scholar
  249. 249.
    Q. Mo, S. Li, Symmetric tight wavelet frames with rational coefficients. Appl. Comput. Harmon. Anal. 31(2), 249–263 (2011)MathSciNetMATHCrossRefGoogle Scholar
  250. 250.
    L. Monzón, G. Beylkin, W. Hereman, Compactly supported wavelets based on almost interpolating and nearly linear phase filters (coiflets). Appl. Comput. Harmon. Anal. 7(2), 184–210 (1999)MathSciNetMATHCrossRefGoogle Scholar
  251. 251.
    D.J. Newman, A simple proof of Wiener’s 1∕f theorem. Proc. Am. Math. Soc. 48, 264–265 (1975)MathSciNetMATHGoogle Scholar
  252. 252.
    I.Ya. Novikov, V.Yu. Protasov, M.A. Skopina, Wavelet Theory, volume 239 of Translations of Mathematical Monographs (American Mathematical Society, Providence, RI, 2011)Google Scholar
  253. 253.
    L. Peng, H. Wang, Construction for a class of smooth wavelet tight frames. Sci. China Ser. F 46(6), 445–458 (2003)MathSciNetMATHCrossRefGoogle Scholar
  254. 254.
    A. Petukhov, Explicit construction of framelets. Appl. Comput. Harmon. Anal. 11(2), 313–327 (2001)MathSciNetMATHCrossRefGoogle Scholar
  255. 255.
    A. Petukhov, Symmetric framelets. Constr. Approx. 19(2), 309–328 (2003)MathSciNetMATHCrossRefGoogle Scholar
  256. 256.
    G. Plonka, Approximation order provided by refinable function vectors. Constr. Approx. 13(2), 221–244 (1997)MathSciNetMATHCrossRefGoogle Scholar
  257. 257.
    G. Plonka, V. Strela, Construction of multiscaling functions with approximation and symmetry. SIAM J. Math. Anal. 29(2), 481–510 (1998)MathSciNetMATHCrossRefGoogle Scholar
  258. 258.
    S.D. Riemenschneider, Z. Shen, Multidimensional interpolatory subdivision schemes. SIAM J. Numer. Anal. 34(6), 2357–2381 (1997)MathSciNetMATHCrossRefGoogle Scholar
  259. 259.
    O. Rioul, Simple regularity criteria for subdivision schemes. SIAM J. Math. Anal. 23(6), 1544–1576 (1992)MathSciNetMATHCrossRefGoogle Scholar
  260. 260.
    A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution. Constr. Approx. 5(3), 297–308 (1989)MathSciNetMATHCrossRefGoogle Scholar
  261. 261.
    A. Ron, Introduction to shift-invariant spaces. Linear independence, in Multivariate Approximation and Applications (Cambridge Univ. Press, Cambridge, 2001), pp. 112–151Google Scholar
  262. 262.
    A. Ron, Z. Shen, Frames and stable bases for shift-invariant subspaces of \(L_{2}(\mathbb{R}^{d})\). Can. J. Math. 47(5), 1051–1094 (1995)MATHCrossRefGoogle Scholar
  263. 263.
    A. Ron, Z. Shen, Affine systems in \(L_{2}(\mathbb{R}^{d})\). II. Dual systems. J. Fourier Anal. Appl. 3(5), 617–637 (1997)CrossRefGoogle Scholar
  264. 264.
    A. Ron, Z. Shen, Affine systems in \(L_{2}(\mathbb{R}^{d})\): the analysis of the analysis operator. J. Funct. Anal. 148(2), 408–447 (1997)MathSciNetMATHCrossRefGoogle Scholar
  265. 265.
    A. Ron, Z. Shen, The Sobolev regularity of refinable functions. J. Approx. Theory 106(2), 185–225 (2000)MathSciNetMATHCrossRefGoogle Scholar
  266. 266.
    G.-C. Rota, G. Strang, A note on the joint spectral radius. Nederl. Akad. Wetensch. Proc. Ser. A 63 Indag. Math. 22, 379–381 (1960)Google Scholar
  267. 267.
    H.L. Royden, Real Analysis, 3rd edn. (Macmillan Publishing, New York, 1988)MATHGoogle Scholar
  268. 268.
    A. San Antolín, R.A. Zalik, Matrix-valued wavelets and multiresolution analysis. J. Appl. Funct. Anal. 7(1–2), 13–25 (2012)MathSciNetMATHGoogle Scholar
  269. 269.
    I.W. Selesnick, Interpolating multiwavelet bases and the sampling theorem. IEEE Trans. Signal Process. 47(6), 1615–1621 (1999)MathSciNetMATHCrossRefGoogle Scholar
  270. 270.
    I.W. Selesnick, Smooth wavelet tight frames with zero moments. Appl. Comput. Harmon. Anal. 10(2), 163–181 (2001)MathSciNetMATHCrossRefGoogle Scholar
  271. 271.
    I.W. Selesnick, A. Farras Abdelnour, Symmetric wavelet tight frames with two generators. Appl. Comput. Harmon. Anal. 17(2), 211–225 (2004)MathSciNetMATHCrossRefGoogle Scholar
  272. 272.
    I.W. Selesnick, R.G. Baraniuk, N.C. Kingsbury, The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)CrossRefGoogle Scholar
  273. 273.
    L. Sendur, I.W. Selesnick, Bivariate shrinkage with local variance estimation. IEEE Signal Process. Lett. 9(12), 438–441 (2002)CrossRefGoogle Scholar
  274. 274.
    Y. Shen, B. Han, E. Braverman, Image inpainting from partial noisy data by directional complex tight framelets. ANZIAM 58, 247–255 (2017)MathSciNetMATHGoogle Scholar
  275. 275.
    Y. Shen, S. Li, Q. Mo, Complex wavelets and framelets from pseudo splines. J. Fourier Anal. Appl. 16(6), 885–900 (2010)MathSciNetMATHCrossRefGoogle Scholar
  276. 276.
    Z. Shen, Refinable function vectors. SIAM J. Math. Anal. 29(1), 235–250 (1998)MathSciNetMATHCrossRefGoogle Scholar
  277. 277.
    Z. Shen, Wavelet frames and image restorations, in Proceedings of the International Congress of Mathematicians. IV (Hindustan Book Agency, New Delhi, 2010), pp. 2834–2863Google Scholar
  278. 278.
    J.-L. Starck, F. Murtagh, J.M. Fadili, Sparse Image and Signal Processing (Cambridge University Press, Cambridge, 2010)MATHCrossRefGoogle Scholar
  279. 279.
    E.M. Stein, R. Shakarchi, Fourier Analysis, volume 1 of Princeton Lectures in Analysis (Princeton University Press, Princeton, NJ, 2003). An IntroductionGoogle Scholar
  280. 280.
    E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, NJ, 1971)MATHGoogle Scholar
  281. 281.
    G. Strang, G. Fix, A Fourier analysis of the finite-element method, in Constructive Aspects of Functional Analysis (C.I.M.E., Rome, 1973), pp. 793–840MATHGoogle Scholar
  282. 282.
    G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Wellesley, MA, 1996)MATHGoogle Scholar
  283. 283.
    Q. Sun, Convergence and boundedness of cascade algorithm in Besov spaces and Triebel-Lizorkin spaces. I. Adv. Math. (China) 29(6), 507–526 (2000)Google Scholar
  284. 284.
    Q. Sun, N. Bi, D. Huang, An Introduction to Multiband Wavelets (Zhejiang University Press, China, 2001). (Chinese)Google Scholar
  285. 285.
    W. Sun, X. Zhou, Irregular wavelet/Gabor frames. Appl. Comput. Harmon. Anal. 13(1), 63–76 (2002)MathSciNetMATHCrossRefGoogle Scholar
  286. 286.
    W. Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)MathSciNetMATHCrossRefGoogle Scholar
  287. 287.
    M. Unser, Sampling–50 years after shannon. Proc. IEEE 88(4), 569–587 (2000)CrossRefGoogle Scholar
  288. 288.
    M. Vetterli, J. Kovačević, Wavelets and Subband Coding (Prentice Hall PTR, Englewood Cliffs, NJ, 1995)MATHGoogle Scholar
  289. 289.
    L.F. Villemoes, Wavelet analysis of refinement equations. SIAM J. Math. Anal. 25(5), 1433–1460 (1994)MathSciNetMATHCrossRefGoogle Scholar
  290. 290.
    D.F. Walnut, An Introduction to Wavelet Analysis. Applied and Numerical Harmonic Analysis (Birkhäuser Boston, Boston, MA, 2002)Google Scholar
  291. 291.
    G.G. Walter, X. Shen, Wavelets and Other Orthogonal Systems. Studies in Advanced Mathematics, 2nd edn. (Chapman & Hall/CRC, Boca Raton, FL, 2001)Google Scholar
  292. 292.
    J. Wang, Stability and linear independence associated with scaling vectors. SIAM J. Math. Anal. 29(5), 1140–1156 (1998)MathSciNetMATHCrossRefGoogle Scholar
  293. 293.
    Y. Wang, Two-scale dilation equations and the cascade algorithm. Random Comput. Dynam. 3(4), 289–307 (1995)MathSciNetMATHGoogle Scholar
  294. 294.
    M.V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software (A K Peters, Ltd., Wellesley, MA, 1994)MATHGoogle Scholar
  295. 295.
    P. Wojtaszczyk, A Mathematical Introduction to Wavelets, volume 37 of London Mathematical Society Student Texts (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  296. 296.
    R.A. Zalik, Riesz bases and multiresolution analyses. Appl. Comput. Harmon. Anal. 7(3), 315–331 (1999)MathSciNetMATHCrossRefGoogle Scholar
  297. 297.
    Z. Zhao, Directional tensor product complex tight framelets. Ph.D. thesis, Department of Mathematical and Statistical Sciences, University of Alberta, August 2015Google Scholar
  298. 298.
    D.-X. Zhou, Existence of multiple refinable distributions. Michigan Math. J. 44(2), 317–329 (1997)MathSciNetMATHCrossRefGoogle Scholar
  299. 299.
    D.-X. Zhou, The p-norm joint spectral radius for even integers. Methods Appl. Anal. 5(1), 39–54 (1998)MathSciNetMATHGoogle Scholar
  300. 300.
    D.-X. Zhou, Multiple refinable Hermite interpolants. J. Approx. Theory 102(1), 46–71 (2000)MathSciNetMATHCrossRefGoogle Scholar
  301. 301.
    D.-X. Zhou, Interpolatory orthogonal multiwavelets and refinable functions. IEEE Trans. Signal Process. 50(3), 520–527 (2002)MathSciNetMATHCrossRefGoogle Scholar
  302. 302.
    X. Zhuang, Interpolating refinable function vectors and matrix extension with symmetry. Ph.D. thesis, Department of Mathematical and Statistical Sciences, University of Alberta, July 2010Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bin Han
    • 1
  1. 1.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations