Skip to main content

Formal Modelling Techniques for Efficient Development of Railway Control Products

  • Conference paper
  • First Online:
Book cover Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification (RSSRail 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10598))

Abstract

We wish to model railway control systems in a formally precise way so that product lines can be adapted to specific customer requirements. Typically a customer is a railway operator with national conventions leading to different variation points based on a common core principle. A formal model of the core product must be precise and manipulatable so that different feature variations can be specified and verified without disrupting important properties that have already been established in the core product. Cyber-physical systems such as railway interlocking, are characterised by the combination of device behaviours resulting in an overall safe system behaviour. Hence there is a strong need for correct sequential operation with safety “interlocks” making up a process. We utilise diagrammatic modelling tools to make the core product more accessible to systems engineers. The RailGround example used to discuss these techniques is an open source model of a railway control system that has been made available by Thales Austria GmbH for research purpose, which demonstrates some fundamental modelling challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actions in Event-B are, in the most general cases, non-deterministic [8].

References

  1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: An open toolset for modelling and reasoning in Event-B. Softw. Tools Technol. Transf. 12(6), 447–466 (2010)

    Article  Google Scholar 

  3. Butler, M., Leuschel, M.: Combining CSP and B for specification and property verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 221–236. Springer, Heidelberg (2005). doi:10.1007/11526841_16

    Chapter  Google Scholar 

  4. The Enable-S3 Consortium. Enable-S3 European project (2016). www.enable-s3.eu

  5. Dghaym, D., Trindade, M.G., Butler, M., Fathabadi, A.S.: A graphical tool for event refinement structures in event-B. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 269–274. Springer, Cham (2016). doi:10.1007/978-3-319-33600-8_20

    Chapter  Google Scholar 

  6. Fathabadi, A.S., Butler, M., Rezazadeh, A.: Language and tool support for event refinement structures in Event-B. Formal Aspects Comput. 27(3), 499–523 (2015)

    Article  MathSciNet  Google Scholar 

  7. Fürst, A., Hoang, T.S., Basin, D.A., Sato, N., Miyazaki, K.: Large-scale system development using abstract data types and refinement. Sci. Comput. Program. 131, 59–75 (2016)

    Article  Google Scholar 

  8. Hoang, T.S.: An introduction to the Event-B modelling method. In: Romanovsky, A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp. 211–236. Springer, Heidelberg (2013)

    Google Scholar 

  9. Hoang, T.S., Snook, C., Dghaym, D., Butler, M.: Class-diagrams for abstract data types. In: Van Hung, D., Deepak, K. (eds.) International Colloquium on Theoretical Aspects of Computing–ICTAC 2017. LNCS, pp. 100–117. Springer, Cham (2017). doi:10.1007/978-3-319-67729-3_7

    Chapter  Google Scholar 

  10. Jackson, M.A.: System Development. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  11. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S.A., Treharne, H.: On modelling and verifying railway interlockings: Tracking train lengths. Sci. Comput. Program 96, 315–336 (2014)

    Article  Google Scholar 

  12. Leuschel, M., Butler, M.: ProB: An automated analysis toolset for the B method. Softw. Tools Technol. Transf. (STTT) 10(2), 185–203 (2008)

    Article  Google Scholar 

  13. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for circus. Formal Aspects Comput. 21(1–2), 3–32 (2009)

    Article  MATH  Google Scholar 

  14. Reichl, K.: RailGround model on github (2016). https://github.com/klar42/railground/. Accessed 20 Apr 2017

  15. Said, M.Y., Butler, M., Snook, C.: A method of refinement in UML-B. Softw. Syst. Model 14(4), 1557–1580 (2015)

    Article  Google Scholar 

  16. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal Aspects Comput. 17(4), 390–422 (2005)

    Article  MATH  Google Scholar 

  17. Schneider, S., Treharne, H., Wehrheim, H.: A CSP approach to control in event-B. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 260–274. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16265-7_19

    Chapter  Google Scholar 

  18. Snook, C.: iUML-B state-machines. In: Proceedings of the Rodin Workshop 2014, Toulouse, France, pp. 29–30 (2014). http://eprints.soton.ac.uk/365301/

  19. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

    Article  Google Scholar 

  20. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of interlocking systems featuring sequential release. Sci. Comput. Program. 133, 91–115 (2017)

    Article  Google Scholar 

  21. Woodcock, J., Cavalcanti, A.: The semantics of Circus. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203. Springer, Heidelberg (2002). doi:10.1007/3-540-45648-1_10

    Chapter  Google Scholar 

Download references

Acknowledgement

This work has been conducted within the ENABLE-S3 project that has received funding from the ECSEL Joint Undertaking under Grant Agreement no. 692455. This Joint Undertaking receives support from the European Union’s HORIZON 2020 research and innovation programm and Austria, Denmark, Germany, Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium, France, Netherlands, United Kingdom, Slovakia, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Snook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Butler, M. et al. (2017). Formal Modelling Techniques for Efficient Development of Railway Control Products. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2017. Lecture Notes in Computer Science(), vol 10598. Springer, Cham. https://doi.org/10.1007/978-3-319-68499-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68499-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68498-7

  • Online ISBN: 978-3-319-68499-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics