Basic Methods

  • Christian Müller-Schloer
  • Sven Tomforde
Part of the Autonomic Systems book series (ASYS)


Organic Computing is a systems science. It deals with the integration of system components and whole subsystems into larger and well-organised higher-level systems. In doing so, OC utilises a multitude of nomenclatures, techniques, and basic methods developed in other scientific disciplines. In this chapter, we will review five basic methods which have proven most important in OC systems so far. For this purpose, we will follow the Multi-layer Organic Computing (MLOC) architecture (Fig. 7.1, cf. Sect. 5.1) bottom-up, starting with the most basic adaptation mechanism on the reactive layer, proceeding to more sophisticated optimisation techniques on the reflective layer, and finally adding techniques for the social interaction in agent communities.


  1. [AN14]
    A. Asuncion, D. Newman, UCI machine learning repository. (2014)
  2. [Ang88]
    D. Angluin, Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)MathSciNetGoogle Scholar
  3. [Atl+90]
    L. Atlas, D. Cohn, R. Ladner, M.A. El-Sharkawi, R.J. Marks II, Training connectionist networks with queries and selective sampling, in Advances in Neural Information Processing Systems 2 (Morgan Kaufmann, Denver, CO, 1990), pp. 566–573Google Scholar
  4. [Aus62]
    J.L. Austin, How to do Things with Words. The William James lectures (Harvard University Press, Cambridge, 1962)Google Scholar
  5. [Bah+16]
    G. Bahle, A. Calma, J.M. Leimeister, P. Lukowicz, S. Oeste-Reiss, T. Reitmaier, A. Schmidt, B. Sick, G. Stumme, K.A. Zweig, Lifelong learning and collaboration of smart technical systems in open-ended environments – opportunistic collaborative interactive learning, in 2016 IEEE International Conference on Autonomic Computing, ICAC 2016, Wuerzburg, 17–22 July 2016, pp. 315–324 (2016)Google Scholar
  6. [Bel38]
    E.T. Bell, The iterated exponential integers. Ann. Math. 39, 539–557 (1938)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [Bel56]
    R. Bellman, Dynamic programming and Lagrange multipliers. Proc. Natl. Acad. Sci. 42(10), 767–769 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [Ber+11]
    A. Bernauer, J. Zeppenfeld, O. Bringmann, A. Herkersdorf, W. Rosenstiel, Combining software and hardware LCS for lightweight on-chip learning, in Organic Computing (Birkhäuser, Basel, 2011), pp. 253–265zbMATHGoogle Scholar
  9. [BG93]
    P. Berman, J.A. Garay, Cloture votes: n/4-resilient distributed consensus in t + 1 rounds. Math. Syst. Theory 26(1), 3–19 (1993). ISSN: 1433-0490MathSciNetzbMATHCrossRefGoogle Scholar
  10. [BGL05]
    M.V. Butz, D.E. Goldberg, P.L. Lanzi, Computational complexity of the XCS classifier system, in Foundations of Learning Classifier Systems, ed. by L. Bull, T. Kovacs. Studies in Fuzziness and Soft Computing (Springer, Berlin/Heidelberg, 2005), pp. 91–126Google Scholar
  11. [Bie+17]
    M. Bieshaar, A. Calma, C. Gruhl, S. Rudolph, A. Stein, Machine learning in organic computing – a brief clarification of terms and concepts, in Organic Computing Doctoral Dissertation Colloquium – Proceedings of the OC-DDC16, ed. by S. Tomforde, B. Sick (Kassel University Press, Kassel, 2017), pp. 113–130Google Scholar
  12. [Bis06]
    C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, New York, 2006)zbMATHGoogle Scholar
  13. [Blo+15]
    D. Bloembergen, K. Tuyls, D. Hennes, M. Kaisers, Evolutionary dynamics of multi-agent learning: a survey. J. Artif. Intell. Res. 53, 659–697 (2015)MathSciNetzbMATHGoogle Scholar
  14. [BLW06]
    M.V. Butz, P.L. Lanzi, S.W. Wilson, Hyper-ellipsoidal conditions in XCS: rotation, linear approximation, and solution structure, in Genetic and Evolutionary Computation Conference, pp. 1457–1464 (2006)Google Scholar
  15. [BLW08]
    M. Butz, P. Lanzi, S. Wilson, Function approximation with XCS: hyperellipsoidal conditions, recursive least squares, and compaction. IEEE Trans. Evol. Comput. 12(3), 355–376 (2008). ISSN: 1089-778XCrossRefGoogle Scholar
  16. [Bra12a]
    J. Branke, Evolutionary Optimization in Dynamic Environments, vol. 3 (Springer Science and Business Media, New York, 2012)zbMATHGoogle Scholar
  17. [Bra12b]
    J. Branke, Evolutionary Optimization in Dynamic Environments, vol. 3 (Springer Science and Business Media, New York, 2012)zbMATHGoogle Scholar
  18. [BRM11]
    W. Brockmann, N. Rosemann, E. Maehle, A framework for controlled self-optimisation in modular system architectures, in Organic Computing – A Paradigm Shift for Complex Systems, ed. by C. Müller-Schloer, H. Schmeck, T. Ungerer (Springer, Basel, 2011), pp. 281–294. ISBN: 978-3-0348-0130-0CrossRefGoogle Scholar
  19. [BS02]
    H.-G. Beyer, H.-P. Schwefel, Evolution strategies – A comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002). ISSN: 1572-9796MathSciNetzbMATHCrossRefGoogle Scholar
  20. [BS07]
    O. Buchtala, B. Sick, Goodness of fit: measures for a fuzzy classifier, in Proceedings of the IEEE Symposium on Foundations of Computational Intelligence, FOCI 2007, part of the IEEE Symposium Series on Computational Intelligence 2007, Honolulu, Hawaii, USA, 1–5 Apr 2007, pp. 201–207 (2007)Google Scholar
  21. [BS96]
    T. Bäck, H.-P. Schwefel, Evolutionary computing: an overview, in Proceedings of IEEE Conference of Evolutionary Computing (CEC’96), held 20–22 May 1996 in Nagoya, pp. 20–29 (1996)Google Scholar
  22. [BSG03]
    M.V. Butz, K. Sastry, D.E. Goldberg, Chapter Tournament selection: stable fitness pressure in XCS, in Proceedings Genetic and Evolutionary Computation — GECCO 2003: Genetic and Evolution-ary Computation Conference Chicago, IL, 12–16 July 2003, Part II (Springer, Berlin/Heidelberg, 2003), pp. 1857–1869. ISBN: 978-3-540-45110-5CrossRefGoogle Scholar
  23. [BTW14]
    K.L. Bellman, S. Tomforde, R.P. Würtz, Interwoven systems: self-improving systems integration, in Eighth IEEE International Conference on Self-adaptive and Self-organizing Systems Workshops, SASOW2014, London, 8–12 Sept 2014, pp. 123–127 (2014)Google Scholar
  24. [But+04]
    M. Butz, T. Kovacs, P. Lanzi, S. Wilson, toward a theory of generalization and learning in XCS. IEEE Trans. Evol. Comput. 8(1), 28–46 (2004). ISSN: 1089-778XGoogle Scholar
  25. [But05]
    M.V. Butz, Rule-Based Evolutionary Online Learning Systems: A Principled Approach to LCS Analysis and Design. Studies in Fuzziness and Soft Computing, vol. 191 (Springer, Berlin, 2005). ISBN: 9783540253792Google Scholar
  26. [BZ06]
    N. Bouguila, D. Ziou, Unsupervised selection of a finite Dirichlet mixture model: an MML-based approach. IEEE Trans. Knowl. Data Eng. 18(8), 993–1009 (2006)CrossRefGoogle Scholar
  27. [Cal+15]
    A. Calma, T. Reitmaier, B. Sick, P. Lukowicz, A new vision of collaborative active learning. CoRR abs/1504.00284 (2015).
  28. [Cou+11]
    G. Coulouris, J. Dollimore, T. Kindberg, G. Blair, Distributed Systems: Concepts and Design, 5th edn. (Addison-Wesley, Boston, 2011)zbMATHGoogle Scholar
  29. [CSV09]
    A.R. Conn, K. Scheinberg, L.N. Vicente, Introduction to Derivative-Free Optimization (SIAM, Philadelphia, 2009)zbMATHCrossRefGoogle Scholar
  30. [CTM11]
    E. Cakar, S. Tomforde, C. Müller-Schloer, A role-based imitation algorithm for the optimisation in dynamic fitness landscapes, in 2011 IEEE Symposium on Swarm Intelligence (SIS), Held 11–15 Apr 2011 in Paris (IEEE, Piscataway, NJ, 2011), pp. 139–146. Google Scholar
  31. [DB10]
    M. Dorigo, M. Birattari, Ant colony optimization, English in Encyclopedia of Machine Learning, ed. by C. Sammut, G. Webb (Springer, New York, 2010), pp. 36–39. ISBN: 978-0-387-30768-8Google Scholar
  32. [DB94]
    M. Dorigo, H. Bersini, A comparison of Q-learning and classifier systems, in In Proceedings of From Animals to Animats, Third International Conference on Simulation of Adaptive Behavior (MIT Press, Cambridge, 1994), pp. 248–255Google Scholar
  33. [Dil99]
    P. Dillenbourg, What do you mean by collaborative learning. Collab. Learn. Cogn. Comput. Approaches 1, 1–15 (1999)Google Scholar
  34. [DSH16]
    K. Deb, K. Sindhya, J. Hakanen, Multi-objective optimization, in Decision Sciences: Theory and Practice (CRC Press, Boca Raton, FL, 2016), pp. 145–184CrossRefGoogle Scholar
  35. [Est+96]
    M. Ester, H. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in Proceeding of KDD-96 (AAAI Press, Menlo Park, CA, 1996), pp. 226–231Google Scholar
  36. [Fis+10]
    D. Fisch, M. Jänicke, B. Sick, C. Müller-Schloer, Quantitative emergence – a refined approach based on divergence measures, in Proceedings of IEEE Conference on Self-adaptive and Self-organising Systems (SASO10), held in Budapest, Hungary, 27 Sept–1 Oct 2010, pp. 94–103 (2010)Google Scholar
  37. [Fis+12]
    D. Fisch, M. Jänicke, E. Kalkowski, B. Sick, Learning from others: exchange of classification rules in intelligent distributed systems. Artif. Intell. 187, 90–114 (2012)CrossRefGoogle Scholar
  38. [Fis+16]
    D. Fisch, C. Gruhl, E. Kalkowski, B. Sick, S.J. Ovaska, Towards automation of knowledge understanding: an approach for probabilistic generative classifiers. Inf. Sci. 370–371, 476–496 (2016)CrossRefGoogle Scholar
  39. [FKS14]
    D. Fisch, E. Kalkowski, B. Sick, Knowledge fusion for probabilistic generative classifiers with data mining applications. IEEE Trans. Knowl. Data Eng. 26(3), 652–666 (2014)CrossRefGoogle Scholar
  40. [FPS10]
    N. Fredivianus, H. Prothmann, H. Schmeck, XCS revisited: a novel discovery component for the eXtended classifier system, in Proceeding of Simulated Evolution and Learning – 8th International Conference, SEAL 2010, pp. 289–298 (2010)Google Scholar
  41. [Gar+17]
    C. García-Martínez, P.D. Gutiérrez, D. Molina, M. Lozano, F. Herrera, Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness. Soft Comput. (2017). ISSN: 1433-7479.
  42. [GKL01]
    Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  43. [Gol89]
    D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. (Addison-Wesley Longman Publishing, Boston, 1989). ISBN: 0201157675zbMATHGoogle Scholar
  44. [Gru+15]
    C. Gruhl, B. Sick, A. Wacker, S. Tomforde, J. Hähner, A building block for awareness in technical systems: online novelty detection and reaction with an application in intrusion detection, in Proceedings of the IEEE 7th International Conference on Awareness Science and Technology (iCAST 2015), Held 22–24 Sept 2015, Qinhuangdao (IEEE, Piscataway, NJ, 2015), pp. 194–200Google Scholar
  45. [GS16]
    C. Gruhl, B. Sick, Detecting novelty with CANDIES – improved awareness techniques based on probabilstic knowledge models. Int. J. Mach. Learn. Cybern. 7(33), 1–19 (2016)Google Scholar
  46. [Gue01]
    R. Guerraoui, On the hardness of failure-sensitive agreement problems. Inf. Process. Lett. 79(2), 99–104 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  47. [Häh+16]
    J. Hähner, S. von Mammen, S. Timpf, S. Tomforde, B. Sick, K. Geihs, G. Stumme, G. Hornung, T. Goeble, Know thyselves – computational self-reflection in collective technical systems, in Proceedings of the 29th GI/ITG International Conference on Architecture of Computing Systems – ARCS Workshops, Held 4–7 April 2016 in Nuremberg, Workshop on Self-Optimisation in Autonomic and Organic Computing Systems (VDE, Berlin, 2016), pp. 1–10Google Scholar
  48. [HG95]
    J. Horn, D.E. Goldberg, Genetic algorithm difficulty and the modality of fitness landscapes. Found. Genet. Algoritm. 3, 243–269 (1995)Google Scholar
  49. [HO96]
    N. Hansen, A. Ostermeier, Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation, in Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (Morgan Kaufmann, Denver, CO, 1996), pp. 312–317Google Scholar
  50. [Hol75]
    J.H. Holland, Adaptation in Natural and Artificial Systems, 2nd edn. (University of Michigan Press, Ann Arbor, MI, 1992/1975)Google Scholar
  51. [Hol76]
    J.H. Holland, Adaptation, in Progress in Theoretical Biology, ed. by R. Rosen, F. Snell, vol. 4 (Academic, New York, 1976), pp. 263–293Google Scholar
  52. [Hol80]
    J.H. Holland, Adaptive algorithms for discovering and using general patterns in growing knowledge-bases. Int. J. Policy Anal. Inf. Syst. 4(3), 245–268 (1980)Google Scholar
  53. [Hol86]
    J.H. Holland, Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems, in Machine Learning: An Artificial Intelligence Approach, ed. by R.S. Michalski, J.G. Carbonell, T.M. Mitchell, vol. 2 (Morgan Kaufmann, Los Altos, CA, 1986)Google Scholar
  54. [HR78]
    J.H. Holland, J.S. Reitman, Cognitive systems based on adaptive algorithms, in Pattern Directed Inference Systems, ed. by D.A. Waterman, F. Hayes-Roth (Academic, New York, 1978), pp. 313–329CrossRefGoogle Scholar
  55. [IBZ12]
    M. Iqbal, W.N. Browne, M. Zhang, XCSR with computed continuous action, in Proceedings AI 2012: Advances in Artificial Intelligence: 25th Australasian Joint Conference, Sydney, 4–7 Dec 2012, ed. by M. Thielscher, D. Zhang (Springer, Berlin/Heidelberg, 2012), pp. 350–361. ISBN: 978-3-642-35101-3CrossRefGoogle Scholar
  56. [IBZ14]
    M. Iqbal, W.N. Browne, M. Zhang, Reusing building blocks of extracted knowledge to solve complex, large-scale boolean problems. IEEE Trans. Evol. Comput. 18(4), 465–480 (2014). ISSN: 1089-778XCrossRefGoogle Scholar
  57. [Jen+01]
    N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, M. Wooldridge, C. Sierra, Automated negotiation: prospects, methods and challenges. Group Decis. Negot. 10(2), 199–215 (2001)CrossRefGoogle Scholar
  58. [JKR11]
    A. Jungmann, B. Kleinjohann, W. Richert, Increasing learning speed by imitation in multi-robot societies, in Organic Computing – A Paradigm Shift for Complex Systems, ed. by C. Müller-Schloer, H. Schmeck, T. Ungerer (Springer, Basel, 2011), pp. 295–307. ISBN: 978-3-0348-0130-0CrossRefGoogle Scholar
  59. [Jon16]
    K.D. Jong, Evolutionary Computation: A Unified Approach (MIT Press, Cambridge, 2016)CrossRefGoogle Scholar
  60. [JTS16]
    M. Jänicke, S. Tomforde, B. Sick, Towards self-improving activity recognition systems based on probabilistic, generative models, in Proceedings of the 13th IEEE International Conference on Autonomic Computing, Held in Würzburg, 19–22 July 2016, pp. 285–291 (2016)Google Scholar
  61. [KLM96]
    L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: a survey. J. Artif. Int. Res. 4(1), 237–285 (1996). ISSN: 1076-9757Google Scholar
  62. [Kor05]
    B. Korte, J. Vygen, Combinatorial optimization, in Theory and Algorithms (Springer, Berlin, 2005)zbMATHGoogle Scholar
  63. [Kor14]
    D. Kornbrot, Kendall’s tau: basic, in Wiley StatsRef: Statistics Reference Online (Wiley, Hoboken, NJ, 2014)Google Scholar
  64. [Kov+15]
    T. Kovacs, M. Iqbal, K. Shafi, R. Urbanowicz, Special issue on the 20th anniversary of XCS. Evol. Intell. 8(2), 51–53 (2015). ISSN: 1864-5917CrossRefGoogle Scholar
  65. [Kov98]
    T. Kovacs, XCS classifier system reliably evolves accurate, complete, and minimal representations for boolean functions, in Soft Computing in Engineering Design and Manufacturing, ed. by P. Chawdhry, R. Roy, R. Pant (Springer, London, 1998), pp. 59–68. ISBN: 978-3-540-76214-0CrossRefGoogle Scholar
  66. [Kru+15]
    C. Krupitzer, F.M. Roth, S. VanSyckel, G. Schiele, C. Becker, A survey on engineering approaches for self-adaptive systems. Pervasive Mob. Comput. Part B 17, 184–206 (2015). 10 years of Pervasive Computing’ In Honor of Chatschik Bisdikian. ISSN: 1574-1192Google Scholar
  67. [KSG04]
    A. Kraskov, H. Stögbauer, P. Grassberger, Estimating mutual information. Phys. Rev. E 69, 066138 (2004)MathSciNetCrossRefGoogle Scholar
  68. [Lan+05]
    P.L. Lanzi, D. Loiacono, S.W. Wilson, D.E. Goldberg, Generalization in the XCSF classifier system: analysis, improvement, and extension. IlliGAL Rep. 2005012. IlliGAL Rep. 2005012. University of Illinois at Urbana-Champaign, Urbana, IL: Illinois Genetic Algorithms Lab, 2005Google Scholar
  69. [LG94]
    D. Lewis, W. Gale, A sequential algorithm for training text classifiers, in Proceeding of Conference on Research and Development in Information Retrieval (ACM/Springer, Berlin, 1994), pp. 3–12Google Scholar
  70. [Liu+16]
    Y. Liu, M. Iqbal, I. Alvarez, W.N. Browne, Integration of codefragment based learning classifier systems for multiple domain perception and learning, in 2016 IEEE Congress on Evolutionary Computation pp. 2177–2184 (2016)Google Scholar
  71. [LSP82]
    L. Lamport, R. Shostak, M. Pease, The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982). ISSN: 0164-0925zbMATHCrossRefGoogle Scholar
  72. [Men+13]
    M. Menze, T. Klinger, D. Muhle, J. Metzler, C. Heipke, A stereoscopic approach for the association of people tracks in video surveillance systems. PFG Photogrammetrie, Fernerkundung, Geoinformation 2013(2), 83–92 (2013)CrossRefGoogle Scholar
  73. [Mit97]
    T.M. Mitchell, Machine Learning, 1st edn. (McGraw-Hill, New York, 1997)zbMATHGoogle Scholar
  74. [ML14]
    A. Miller, J.J. LaViola Jr., Anonymous byzantine consensus from moderately-hard puzzles: a model for bitcoin. (2014)Google Scholar
  75. [MM06]
    M. Mnif, C. Müller-Schloer, Quantitative emergence, in Proceedings of the 2006 IEEE Mountain Workshop on Adaptive and Learning Systems (SMCals 2006), held 24 Jul–26 Jul 2006, Utah State University College of Engineering Logan, UT (IEEE, Logan, 2006), pp. 78–84. ISBN: 978-1-4244-0166-6CrossRefGoogle Scholar
  76. [MM12]
    M. Menze, D. Muhle, Using stereo vision to support the automated analysis of surveillance videos, in ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 47–51 (2012)Google Scholar
  77. [Mod+05]
    P.J. Modi, W.-M. Shen, M. Tambe, M. Yokoo, ADOPT: asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  78. [Mos89]
    P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms, C3P Report 826. Caltech Concurrent Computation Program, 1989Google Scholar
  79. [MS03a]
    M. Markou, S. Singh, Novelty detection: a review – part 1: statistical approaches. Signal Process. 83, 2481–2497 (2003)zbMATHCrossRefGoogle Scholar
  80. [MS03b]
    M. Markou, S. Singh, Novelty detection: a review – part 2: neural network based approaches. Signal Process. 83, 2499–2521 (2003)zbMATHCrossRefGoogle Scholar
  81. [MS97]
    A. Motro, P. Smets, Uncertainty Management in Information Systems – From Needs to Solutions (Springer, Berlin, 1997)zbMATHCrossRefGoogle Scholar
  82. [MSU11]
    C. Müller-Schloer, H. Schmeck, T. Ungerer, Organic Computing – A Paradigm Shift for Complex Systems (Springer, Berlin/Heidelberg, 2011)zbMATHCrossRefGoogle Scholar
  83. [Mur12]
    K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, 2012)zbMATHGoogle Scholar
  84. [MW09]
    M.K. Müller, R.P. Würtz, Learning from examples to generalize over pose and illumination, in Proceedings of the 19th International Conference on Artificial Neural Networks: Part II (Springer, Limassol, CY, 2009), pp. 643–652. ISBN: 978-3-642-04276-8CrossRefGoogle Scholar
  85. [Nak08]
    S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System. (2008)
  86. [Pap94]
    C.M. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, MA, 1994). ISBN: 0201530821zbMATHGoogle Scholar
  87. [Pea95]
    K. Pearson, Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 58(1), 240–242 (1895)CrossRefGoogle Scholar
  88. [Pim+14]
    M.A. Pimentel, D.A. Clifton, L. Clifton, L. Tarassenko, A review of novelty detection. Signal Process. 99, 215–249 (2014). ISSN: 01651684CrossRefGoogle Scholar
  89. [PK15]
    T. Pickering, T. Kovacs, TP-XCS: an XCS classifier system with fixed-length memory for reinforcement learning, in 2015 IEEE Congress on Evolutionary Computation, pp. 3020–3025 (2015)Google Scholar
  90. [PL05]
    L. Panait, S. Luke, Cooperative multi-agent learning: the state of the art. Auton. Agent. Multi-Agent Syst. 11(3), 387–434 (2005)CrossRefGoogle Scholar
  91. [Pos07]
    S. Poslad, Specifying protocols for multi-agent systems interaction. ACM Trans. Auton. Adapt. Syst. 2(4) (2007). ISSN: 1556-4665Google Scholar
  92. [Pro+08]
    H. Prothmann, F. Rochner, S. Tomforde, J. Branke, C. Müller-Schloer, H. Schmeck, Organic control of traffic lights, in Proceedings of the 5th International Conference on Autonomic and Trusted Computing (ATC-08), Held in Oslo, 23–25 June 2008, ed. by C. Rong et al. LNCS, vol. 5060 (Springer, Berlin, 2008), pp. 219–233Google Scholar
  93. [Pro+09]
    H. Prothmann, J. Branke, H. Schmeck, S. Tomforde, F. Rochner, J. Hähner, C. Müller-Schloer, Organic traffic light control for urban road networks. Int. J. Auton. Adapt. Commun. Syst. 2(3), 203–225 (2009). ISSN: 1754-8632CrossRefGoogle Scholar
  94. [Pro+11]
    H. Prothmann, S. Tomforde, J. Branke, J. Hähner, C. Müller-Schloer, H. Schmeck, Organic traffic control, in Organic Computing – A Paradigm Shift for Complex Systems (Springer, Basel, 2011), pp. 431–446CrossRefGoogle Scholar
  95. [Ree99]
    C.R. Reeves, Fitness landscapes and evolutionary algorithms, in European Conference on Artificial Evolution (Springer, Berlin, 1999), pp. 3–20Google Scholar
  96. [Reg36]
    U. Regius, Utriusque Arithmetices Epitome, Ex Variis Authoribus Concinnata (Stephanus Melechus Gravius, Friburgi Brisgoiae, 1536)Google Scholar
  97. [Res+11]
    D.N. Reshef, Y.A. Reshef, H.K. Finucane, S.R. Grossman, G. McVean, P.J. Turnbaugh, E.S. Lander, M. Mitzenmacher, P.C. Sabeti, Detecting novel associations in large data sets. Science 334(6062), 1518–1524 (2011)zbMATHCrossRefGoogle Scholar
  98. [RN95]
    S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (Prentice-Hall, Upper Saddle River, NJ, 1995). ISBN: 0-13-103805-2zbMATHGoogle Scholar
  99. [Rod+98]
    J.A. Rodríguez-Aguilar, F. Martin, P. Noriega, P. Garcia, C. Sierra, Towards a test-bed for trading agents in electronic auction markets. AI Commun. 11(1), 5–19 (1998)Google Scholar
  100. [RS13]
    T. Reitmaier, B. Sick, Let us know your decision: pool-based active training of a generative classifier with the selection strategy 4DS. Inf. Sci. 230, 106–131 (2013)CrossRefGoogle Scholar
  101. [RT16]
    S. Rudolph, S. Tomforde, A taxonomy for organic computing systems regarding mutual influences. Tech. rep. 2016-03. Technische Berichte der Fakultaet fuer Angewandte Informatik der Universitaet Augsburg, 2016Google Scholar
  102. [RTH16]
    S. Rudolph, S. Tomforde, J. Hähner, A mutual influence-based learning algorithm, in Proceedings of the 8th International Conference on Agents and Artificial Intelli-gence (ICAART 2016), Volume 1, Rome, 24–26 Feb 2016, pp. 181–189 (2016)Google Scholar
  103. [Rud+15a]
    S. Rudolph, S. Tomforde, B. Sick, H. Heck, A. Wacker, J. Hähner, An online influence detection algorithm for organic computing systems, in Proceedings of the 28th GI/ITG International Conference on Architecture of Computing Systems – ARCS Workshops (2015)Google Scholar
  104. [Rud+15b]
    S. Rudolph, S. Tomforde, B. Sick, J. Hähner, A mutual influence detection algorithm for systems with local performance measurement, in Proceedings of the 9th IEEE Conference on Self-adaptive and Self-organizing Systems (IEEE, Piscataway, NJ, 2015)Google Scholar
  105. [Rud+16]
    S. Rudolph, R. Hihn, S. Tomforde, J. Hähner, Comparison of dependency measures for the detection of mutual influences in organic computing systems, in Proceedings Architecture of Computing Systems – ARCS 2016: 29th International Conference, Nuremberg, 4–7 Apr 2016 (Springer, Cham, 2016), pp. 334–347. ISBN: 978-3-319-30695-7CrossRefGoogle Scholar
  106. [Rud+17]
    S. Rudolph, R. Hihn, S. Tomforde, J. Hähner, Towards discovering delayed mutual influences in organic computing systems, in ARCS 2017; 30th GI/ITG International Conference on Architecture of Computing Systems, pp. 39–46 (2017). ISBN: 978-3-8007-4395-7Google Scholar
  107. [San99]
    T.W. Sandholm, Distributed rational decision making, in Multiagent Systems, ed. by G. Weiss (MIT Press, Cambridge, 1999), pp. 201–258. ISBN: 0-262-23203-0Google Scholar
  108. [Sav51]
    L.J. Savage, The theory of statistical decision. J. Am. Stat. Assoc. 46(253), 55–67 (1951)zbMATHCrossRefGoogle Scholar
  109. [SB03]
    C. Stone, L. Bull, For real! XCS with continuous-valued inputs. Evol. Comput. 11(3), 298–336 (2003)Google Scholar
  110. [SB98]
    R. Sutton, A. Barto, Reinforcement Learning: An Introduction, vol. 116 (Cambridge University Press, Cambridge, 1998)Google Scholar
  111. [Sea69]
    J.R. Searle, Speech Acts: An Essay in the Philosophy of Language (Cambridge University Press, Cambridge, 1969)CrossRefGoogle Scholar
  112. [Sea76]
    J.R. Searle, A classification of illocutionary acts. Lang. Soc. 5(1), 1–23 (1976). ISSN: 00474045, 14698013Google Scholar
  113. [Sea82]
    J.R. Searle, Expression and meaning: studies in the theory of speech acts. Philos. Rev. 91(3), 488–493 (1982)CrossRefGoogle Scholar
  114. [Set09]
    B. Settles, Active learning literature survey, Computer Sciences Technical Report 1648. University of Wisconsin, Department of Computer Science, 2009Google Scholar
  115. [Sha05]
    A. Sharma, Text Book Of Correlations And Regression (Discovery, New Delhi, 2005). ISBN: 9788171419357Google Scholar
  116. [Sim13]
    D. Simon, Evolutionary Optimisation Algorithms (Wiley, New York, 2013)Google Scholar
  117. [Smi80]
    S.F. Smith, A learning system based on genetic adaptive algorithms, Ph.D. thesis, University of Pittsburgh, Pittsburgh, PA, 1980Google Scholar
  118. [SRB07]
    G.J. Székely, M.L. Rizzo, N.K. Bakirov, Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6), 2769–2794 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  119. [SSH16]
    M. Sommer, A. Stein, J. Hähner, Local ensemble weighting in the context of time series forecasting using XCSF, in 2016 IEEE Symposium Series on Computational Intelligence, pp. 1–8 (2016)Google Scholar
  120. [Ste+16a]
    A. Stein, C. Eymüller, D. Rauh, S. Tomforde, J. Hähner, Interpolation-based classifier generation in XCSF, in 2016 IEEE Congress on Evolutionary Computation, pp. 3990–3998 (2016)Google Scholar
  121. [Ste+16b]
    A. Stein, S. Tomforde, D. Rauh, J. Hähner, Dealing with unforeseen situations in the context of self-adaptive urban traffic control: How to bridge the gap? 2016 IEEE International Conference on Autonomic Computing, pp. 167–172 (2016)Google Scholar
  122. [Ste+16c]
    A. Stein, D. Rauh, S. Tomforde, J. Hähner, Chapter Augmenting the algorithmic structure of XCS by means of interpolation, in Proceedings Architecture of Computing Systems – ARCS 2016: 29th International Conference, Nuremberg, 4–7 April 2016, ed. by F. Hannig, M.J. Cardoso, T. Pionteck, D. Fey, W. Schröder-Preikschat, J. Teich (Springer, Cham, 2016), pp. 348–360. ISBN: 978-3-319-30695-7CrossRefGoogle Scholar
  123. [Ste+17]
    A. Stein, D. Rauh, S. Tomforde, J. Hähner, Interpolation in the extended classifier system: an architectural perspective. J. Syst. Archit. 75, 79–94 (2017). ISSN: 1383-7621CrossRefGoogle Scholar
  124. [Sto13]
    J.V. Stone, Information Theory: A Tutorial Introduction, ed. by J.V Stone (Sebtel, Sheffield, 2013)Google Scholar
  125. [SV99]
    J.A. Suykens, J. Vandewalle, Least squares support vector machine classifiers. Neural. Process. Lett. 9(3), 293–300 (1999)zbMATHCrossRefGoogle Scholar
  126. [SW49]
    C. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949). ISBN: 0-252-72548-4zbMATHGoogle Scholar
  127. [TCH09]
    S. Tomforde, E. Cakar, J. Hähner, Dynamic control of network protocols – a new vision for future self-organised networks, in Proceedings of the 6th International Conference on Informatics in Control, Automation, and Robotics, Held in Milan, 2–5 July 2009), ed. by J. Filipe, J.A. Cetto, J.-L. Ferrier (INSTICC, Milan, 2009), pp. 285–290Google Scholar
  128. [Thea]
    The OEIS Foundation, The On-Line Encyclopedia of Integer Sequences, Sequence A000110.
  129. [Theb]
    The OEIS Foundation, The On-Line Encyclopedia of Integer Sequences, Sequence A000225.
  130. [Tom+09]
    S. Tomforde, M. Steffen, J. Hähner, C. Müller-Schloer, Towards an organic network control system, in Proceeding of the 6th International Conference on Autonomic and Trusted Computing, Held in Brisbane (7 Jul–10 Jul 2009) (Springer, Berlin, 2009), pp. 2–16Google Scholar
  131. [Tom+11a]
    S. Tomforde, A. Brameshuber, J. Hähner, C. Müller-Schloer, Restricted on-line learning in real-world systems, in Proceeding of the IEEE Congress on Evolutionary Computation, Held 05 Jun–08 Jun 2011 in New Orleans (IEEE, Piscataway, NJ, 2011), pp. 1628–1635Google Scholar
  132. [Tom+11b]
    S. Tomforde, H. Prothmann, J. Branke, J. Hähner, M. Mnif, C. Müller-Schloer, U. Richter, H. Schmeck, Observation and control of organic systems, in Organic Computing – A Paradigm Shift for Complex Systems, ed. by C. Müller-Schloer, H. Schmeck, T. Ungerer. Autonomic Systems (Birkhäuser, Basel, 2011), pp. 325–338Google Scholar
  133. [Tom+14a]
    S. Tomforde, J. Hähner, S. von Mammen, C. Gruhl, B. Sick, K. Geihs, “Know Thyself” – computational self-reflection in intelligent technical systems, in Eighth IEEE International Conference on Self-adaptive and Self-organizing Systems Workshops, SASOW2014, London, 8–12 Sept 2014, pp. 150–159 (2014)Google Scholar
  134. [Tom+14b]
    S. Tomforde, J. Hähner, H. Seebach, W. Reif, B. Sick, A. Wacker, I. Scholtes, Engineering and mastering interwoven systems, in ARCS 2014 – 27th International Conference on Architecture of Computing Systems, Workshop Proceedings, 25–28 Feb 2014, Luebeck, University of Luebeck, Institute of Computer Engineering, pp. 1–8 (2014)Google Scholar
  135. [Tom+16]
    S. Tomforde, S. Rudolph, K. Bellman, R. Würtz, An organic computing perspective on self-improving system interweaving at runtime, in 2016 IEEE International Conference on Autonomic Computing (IEEE, Piscataway, NJ, 2016), pp. 276–284Google Scholar
  136. [TRB09]
    S.D. Turner, M.D. Ritchie, W.S. Bush, Conquering the needlein-a-haystack: how correlated input variables beneficially alter the fitness landscape for neural networks, in European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (Springer, Berlin, 2009), pp. 80–91Google Scholar
  137. [TSM17]
    S. Tomforde, B. Sick, C. Müller-Schloer, Organic computing in the spotlight. (2017)
  138. [UM09]
    R.J. Urbanowicz, J.H. Moore, Learning classifier systems: a complete introduction, review, and roadmap. J. Artif. Evol. Appl. 2009, 1:1-1:25 (2009). ISSN: 1687-6229Google Scholar
  139. [Ves04]
    J.S. Vestroem, A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems, in Proceedings of the 2004 Congress on Evolutionary Computation, vol. 2 (IEEE, Piscataway, NJ, 2004), pp. 1980–1987Google Scholar
  140. [Wal45]
    A. Wald, Statistical decision functions which minimize the maximum risk. Ann. Math. 46, 265–280 (1945)MathSciNetzbMATHCrossRefGoogle Scholar
  141. [Wat89]
    C.J.C.H. Watkins, Learning from delayed rewards, Ph.D. thesis, King’s College, Cambridge, 1989Google Scholar
  142. [WD92]
    C.J. Watkins, P. Dayan, Q-learning. Mach. Learn. 8(3), 279–292 (1992)zbMATHGoogle Scholar
  143. [WH88]
    B. Widrow, M.E. Hoff, Adaptive switching circuits, in Neurocomputing: Foundations of Research, ed. by J.A. Anderson, E. Rosenfeld (MIT Press, Cambridge, 1988), pp. 123–134. ISBN: 0-262-01097-6Google Scholar
  144. [Wil00]
    S. Wilson, Get real! XCS with continuous-valued inputs, English, in Learning Classifier Systems, ed. by P. Lanzi, W. Stolzmann, S. Wilson. Lecture Notes in Computer Science, vol. 1813 (Springer, Berlin/Heidelberg, 2000), pp. 209–219. ISBN: 978-3-540-67729-1Google Scholar
  145. [Wil07]
    S.W. Wilson, Three architectures for continuous action, in Learning Classifier Systems: International Workshops, IWLCS 2003–2005, Revised Selected Papers, ed. by T. Kovacs, X. Llorà, K. Takadama, P.L. Lanzi, W. Stolzmann, S.W. Wilson (Springer, Berlin/Heidelberg, 2007), pp. 239–257. ISBN: 978-3-540-71231-2CrossRefGoogle Scholar
  146. [Wil94]
    S.W. Wilson, ZCS: a zeroth level classifier system. Evol. Comput. 2(1), 1–18 (1994)CrossRefGoogle Scholar
  147. [Wil95]
    S.W. Wilson, Classifier fitness based on accuracy. Evol. Comput. 3(2), 149–175 (1995). ISSN: 1063-6560CrossRefGoogle Scholar
  148. [Wil98]
    S.W. Wilson, Generalization in the XCS classifier system, in Genetic Programming 1998: Proceedings of the Third Annual Conference, ed. by J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R. Riolo (University of Wisconsin/Morgan Kaufmann, Madison, 1998), pp. 665–674. ISBN: 1-55860-548-7Google Scholar
  149. [WN99]
    S. Wright, J. Nocedal, Numerical Optimization, vol. 35 (Springer, New York, 1999), pp. 67–68zbMATHGoogle Scholar
  150. [Wri32]
    S. Wright, The roles of mutation, inbreeding, crossbreeding, and selection in evolution, in Proceedings of the Sixth International Congress on Genetics, pp. 355–366 (1932)Google Scholar
  151. [WW11]
    T. Walther, R.P. Würtz, Learning to look at humans, in Organic Computing – A Paradigm Shift for Complex Systems, ed. by C. Müller-Schloer, H. Schmeck, T. Ungerer (Springer, Basel, 2011), pp. 309–322. ISBN: 978-3-0348-0130-0CrossRefGoogle Scholar
  152. [Yan08]
    X.S. Yang, Nature-Inspired Metaheuristic Algorithms (Luniver, Frome, 2008)Google Scholar
  153. [Zep+11]
    J. Zeppenfeld, A. Bouajila, W. Stechele, A. Bernauer, O. Bringmann, W. Rosenstiel, A. Herkersdorf, Applying ASoC to multi-core applications for workload management, in Organic Computing – A Paradigm Shift for Complex Systems (Birkhäuser, Basel, 2011), pp. 461–472CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christian Müller-Schloer
    • 1
  • Sven Tomforde
    • 2
  1. 1.Institute of Systems EngineeringLeibniz Universität HannoverHannoverGermany
  2. 2.Intelligent Embedded Systems GroupUniversität KasselKasselGermany

Personalised recommendations