Skip to main content

Calorimeter Designs Based on Fibre-Shaped Scintillators

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 200))

Abstract

Crystal fibres of high density represent a flexible and powerful tool for the design of calorimeters capable to operate under the challenging environments of future accelerator experiments. The high light yield and good radiation tolerance of garnet crystal fibres allow using them as active detecting elements for detectors operating in harsh radiation environments such as those of high luminosity hadron colliders. Recent improvements in the material engineering have also demonstrated the possibility to reduce the scintillation decay time constant of garnet crystals such as LuAG, YAG and GAGG by addition of divalent ions. This makes garnet materials even more suitable for applications where the radiation detection occurs at very high rates. In the following we summarize the progress made on both technology development and detector design achieved in the past years with the goal of tailoring crystal fibres for future calorimetry applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The HiLumi LHC Collaboration. HL-LHC Preliminary Design Report (2014)

    Google Scholar 

  2. T. Behnke et al., The International Linear Collider Technical Design Report (2013)

    Google Scholar 

  3. M. Aicheler et al., A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report (2012)

    Google Scholar 

  4. https://fcc.web.cern.ch/Pages/default.aspx

  5. The CALICE collaboration, J. Instrum. 5(05), 5004 (2010)

    Article  Google Scholar 

  6. R. Wigmans, Nucl. Instrum. Methods, A. 617(1–3), 129–133 (2010)

    Google Scholar 

  7. P. Lecoq, in IEEE Nuclear Science Symposium pp. 1405–1409 (2008)

    Google Scholar 

  8. P. Lecoq, J. Phys. 160(1), 12016 (2009)

    Google Scholar 

  9. E. Auffray et al., IEEE Trans. Nucl. Sci. 57(3), 1454–1459 (2010)

    Google Scholar 

  10. K. Lebbou, Opt. Mater. 63, 13–18 (2017)

    Article  ADS  Google Scholar 

  11. M. Lucchini et al., IEEE Trans. Nucl. Sci. 63(2), 586–590 (2016)

    Google Scholar 

  12. M. Nikl et al., Cryst. Growth Des. 14(9) 4827–4833 (2014)

    Google Scholar 

  13. M.T. Lucchini et al., Nucl. Instrum. Methods, A. 852, 1–9 (2017)

    Google Scholar 

  14. R. Becker et al., Nucl. Instrum. Methods, A. 804, 79–83 (2015)

    Google Scholar 

  15. A. Heering et al., Nucl. Instrum. Methods, A. 824, 111–114 (2016)

    Google Scholar 

  16. G. Mavromanolakis et al., J. Instrum. 6(10), 10012 (2011)

    Google Scholar 

  17. The CMS Collaboration. The CMS Electromagnetic Calorimeter Project Technical Design Report, 361 CERN/LHCC 97-33, CMS TDR 4 (1997)

    Google Scholar 

  18. The CMS Collaboration. The CMS Hadron Calorimeter Project: Technical Design Report, CERN-LHCC-97-031 (1997)

    Google Scholar 

  19. K. Pauwels et al., J. Instrum. 8(09), 09019 (2013)

    Google Scholar 

  20. X. Xu et al., Acta Mater. 67, 232–238 (2014)

    Google Scholar 

  21. A. Nagura et al., Jpn. J. Appl. Phys. 54, 04DH17 (2015)

    Google Scholar 

  22. A. Petrosyan et al., J. Cryst. Growth. 430, 46 (2015)

    Google Scholar 

  23. K. Kamada et al., J. Cryst. Growth. 352, 88 (2012)

    Google Scholar 

  24. K Kamada et al., Opt. Mater. 41, 63 (2015)

    Google Scholar 

  25. V. Kononets et al., other section of this edited book (Development of YAG:Ce and YAGG:Ce scintillation fibers) (2017)

    Google Scholar 

  26. M. Lucchini et al., Nucl. Instrum. Methods A. 816, 176–183 (2016)

    Google Scholar 

  27. M. Lucchini et al., J. Instrum. 8(10), 10017 (2013)

    Google Scholar 

  28. A. Benaglia et al., J. Instrum. 11, P05004 (2016)

    Google Scholar 

  29. V. Khachatryan et al., J. Instrum. 11, T10004 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to P. Lecoq, D. Deyrail, N. Siegrist and H. Gerwig (CERN, Switzerland), K. Lebbou and C. Dujardin (ILM, France), to X. Xu (Jiangsu Normal University), to N. Aubry and S. Faraj (Fibercryst, France), to T. Medvedeva and C. Tully (University of Princeton, USA), to A. Heering (University of Notre-Dame, USA), to V. Kononets and O. Sidletskiy (ISMA, Ukraine), to K. Blazek and S. Ochesanu (Crytur, Czech Republic), to M. Korjik (INP-BSU), to N. Chiodini, F. Cova, M. Fasoli, F. Moretti and A. Vedda (University of Milano-Bicocca, Italy), to M. Nikl (Institute of Physics, Czech Republic), to K. Kamada and A. Yoshikawa (C&A) and more generally all our colleagues from the Crystal Clear collaboration in the scope of which the research was conducted. The authors received funding from the French National Agency for Research under grant agreement ANR-10-BLAN-0947 (INFINHI), from the European Union FP7/2007-2013 under grant agreement 289355-PicoSEC-MCNet and from the European Union’s Horizon 2020 research and innovation program under the Marie-Curie grant agreements 644260 (Intelum) and 654168 (AIDA-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pauwels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pauwels, K., Lucchini, M., Benaglia, A., Auffray, E. (2017). Calorimeter Designs Based on Fibre-Shaped Scintillators. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2016. Springer Proceedings in Physics, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-68465-9_14

Download citation

Publish with us

Policies and ethics