Skip to main content

Model Predictive Control of Multi-zone Vapor Compression Systems

  • Chapter
  • First Online:
Intelligent Building Control Systems

Abstract

While the previous chapter presented modeling and control strategies for vapor compression systems in general, in this chapter, a model predictive controller is designed for a multi-zone vapor compression system. Controller requirements representing desired performance of production-scale equipment are provided and include baseline requirements common in control literature (constraint enforcement, reference tracking, disturbance rejection) and also extended requirements necessary for commercial application (selectively deactivating zones, implementable on embedded processors with limited memory/computation, compatibility with demand response events.). A controller architecture is presented based on model predictive control to meet the requirements. Experiments are presented validating constraint enforcement and automatic deactivation of zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chua KJ, Chou SK, Yang WM (2010) Advances in heat pump systems: a review. Appl Energy 87(12):3611–3624. https://doi.org/10.1016/j.apenergy.2010.06.014

  2. Hepbasli A, Kalinci Y (2009) A review of heat pump water heating systems. Renew Sustain Energy Rev 13(6–7):1211–1229

    Article  Google Scholar 

  3. Liu M, Saman W, Bruno F (2012) Development of a novel refrigeration system for refrigerated trucks incorporating phase change material. Appl Energy 92:336–342

    Article  Google Scholar 

  4. Tassou SA, De-Lille G, Ge YT (2009) Food transport refrigeration - approaches to reduce energy consumption and environmental impacts of road transport. Appl Therm Eng 29(8–9):1467–1477

    Article  Google Scholar 

  5. Hawlader M, Dey PK, Diab S, Chung CY (2004) Solar assisted heat pump desalination system. Desalination 168:49–54

    Article  Google Scholar 

  6. Slesarenko V (2001) Heat pumps as a source of heat energy for desalination of seawater. Desalination 139(1–3):405–410

    Article  Google Scholar 

  7. Burger J, Holland H, Berenschot E, Seppenwodde J, ter Brake M, Gardeniers H, Elwenspoek M (2001) 169 kelvin cryogenic microcooler employing a condenser, evaporator, flow restriction and counterflow heat exchangers. In: 14th IEEE international conference on micro electro mechanical systems, pp 418–421

    Google Scholar 

  8. Aynur T (2010) Variable refrigerant flow systems: a review. Energy Build 42:1106–1112

    Article  Google Scholar 

  9. Goetzler W (2007) Variable refrigerant flow systems. ASHRAE J 49(4):24–31

    Google Scholar 

  10. Qureshi T, Tassou S (1996) Variable-speed capacity control in refrigeration systems. Appl Therm Eng 16(2):103–113

    Article  Google Scholar 

  11. He X-D, Liu S, Asada HH (1997) Modeling of vapor compression cycles for multivariable feedback control of HVAC systems. J Dyn Syst Meas Contr 119(2):183–191

    Article  MATH  Google Scholar 

  12. He X-D, Liu S, Asada HH, Itoh H (1998) Multivariable control of vapor compression systems. HVAC&R Res 4(3):205–230

    Article  Google Scholar 

  13. Amano K (2012) Heat pump apparatus and control method thereof, June 2012, eP Patent App. EP20,110,007,843. https://www.google.com/patents/EP2469201A2

  14. Glattfelder AH, Schaufelberger W (2003), Control systems with input and output constraints. Springer

    Google Scholar 

  15. Qin S, Badgwell T (2003) A survey of industrial model predictive control technology. Control Eng Pract 11(7):733–764

    Article  Google Scholar 

  16. Di Cairano S, Brand M, Bortoff SA (2013) Projection-free parallel quadratic programming for linear model predictive control. Int J Control 86(8):1367–1385

    Article  MathSciNet  MATH  Google Scholar 

  17. Maciejowski, JM (2002) Predictive control with constraints. Pearson Education Limited

    Google Scholar 

  18. Burns DJ, Danielson C, Zhou J, Di Cairano S, Reconfigurable model predictive control for multi-evaporator vapor compression systems. IEEE Trans Control Syst Technol, under review

    Google Scholar 

  19. Bendtsen J, Trangbaek K, Stoustrup J (2013) Plug-and-play control: modifying control systems online. IEEE Trans Control Syst Technol 21(1):79–93

    Article  MATH  Google Scholar 

  20. Stoustrup J (2009) Plug & play control: control technology towards new challenges. Eur J Control 15(3):311–330

    Article  MathSciNet  MATH  Google Scholar 

  21. Pannocchia G, Rawlings JB (2003) Disturbance models for offset-free model-predictive control. AIChE J 49(2):426–437

    Article  Google Scholar 

  22. Maeder U, Borrelli F, Morari M (2009) Linear offset-free model predictive control. Automatica 45(10):2214–2222

    Article  MathSciNet  MATH  Google Scholar 

  23. Wallace M, Das B, Mhaskar P, House J, Salsbury T (2012) Offset-free model predictive control of a vapor compression cycle. J Process Control 22(7):1374–1386

    Article  Google Scholar 

  24. Bejan A (2006) Advanced engineering thermodynamics, 3rd edn. Wiley

    Google Scholar 

  25. Li P, Qiao H, Li Y, Seem J, Winkler J, Li X (2014) Recent advances in dynamic modeling of HVAC equipment. Part 1: equipment modeling. HVAC&R Res 20(1):136–149

    Article  Google Scholar 

  26. Li P, Li Y, Seem J, Qiao H, Li X, Winkler J (2014) Recent advances in dynamic modeling of HVAC equipment. Part 2: modelica-based modeling. HVAC&R Res 20(1):150–161

    Article  Google Scholar 

  27. Ishii M, Hibiki T (2011) Thermo-fluid dynamics of two-phase flow, 2nd edn. Springer

    Google Scholar 

  28. Laughman C, Qiao H, Aute V, Radermacher R (2015) A comparison of transient heat pump cycle models using alternative flow descriptions. Sci Technol Built Environment 21(5):666–680

    Article  Google Scholar 

  29. Burns DJ, Bortoff SA (2016) Cooling capacity control for multi-evaporator vapor compression systems. In: 16th international refrigeration and air conditioning conference at Purdue

    Google Scholar 

  30. Borrelli F, Bemporad A, Morari M (2015) Predictive control for linear and hybrid systems. Springer

    Google Scholar 

  31. Burns DJ, Laughman CR, Guay M (2016) Proportional-integral extremum seeking for vapor compression systems. In: Proceedings of the 2016 American controls conference

    Google Scholar 

  32. Burns DJ, Laughman CR (2012) Extremum seeking control for energy optimization of vapor compression systems. In: International refrigeration and air conditioning conference at Purdue

    Google Scholar 

  33. Di Cairano S, Tseng HE, Bernardini D, Bemporad A (2013) Vehicle yaw stability control by coordinated active front steering and differential braking in the tire sideslip angles domain. IEEE Trans Control Syst Technol 21(4):1236–1248

    Article  Google Scholar 

  34. Burns DJ, Weiss WK, Guay M (2015) Realtime setpoint optimization with time-varying extremum seeking for vapor compression systems. In: Proceedings of the 2015 American controls conference

    Google Scholar 

  35. Pannocchia G, Rawlings JB (2003) Disturbance models for offset-free model-predictive control. AIChE J 49(2):426–437

    Article  Google Scholar 

  36. Maeder U, Borrelli F, Morari M (2009) Linear offset-free model predictive control. Automatica 45(10):2214–2222

    Article  MathSciNet  MATH  Google Scholar 

  37. Di Cairano S, Pascucci CA, Bemporad A (2012) The rendezvous dynamics under linear quadratic optimal control. In: Proceedings of the 51st IEEE conference on decision and control. IEEE, pp 6554–6559

    Google Scholar 

  38. Di Cairano S (2015) Model adjustable predictive control with stability guarantees. In: American control conference (ACC), July 2015, pp 226–231

    Google Scholar 

  39. Floudas CA (1995) Nonlinear and mixed-integer optimization. Oxford University Press

    Google Scholar 

  40. Bridgeman L, Danielson C, Di Cairano S (2016) Stability and feasibility of mpc for switched linear systems with dwell-time constraints. In: American control conference (ACC)

    Google Scholar 

  41. Di Cairano S, Bemporad A (2010) Model predictive control tuning by controller matching. IEEE Trans Autom Control 55(1):185–190

    Article  MathSciNet  MATH  Google Scholar 

  42. Necoara I, Suykens J (2008) Application of a smoothing technique to decomposition in convex optimization. IEEE Trans Autom Control 53(11):2674–2679

    Article  MathSciNet  MATH  Google Scholar 

  43. Giselsson P (2012) Execution time certification for gradient-based optimization in model predictive control. In: Proceedings of the 51st IEEE conference on decision and control, Maui, HI, pp 3165–3170

    Google Scholar 

  44. Kögel M, Findeisen R (2011) Fast predictive control of linear systems combining Nesterov’s gradient method and the method of multipliers. In: Proceedings of the 50th IEEE conference on decision and control, Orlando, FL, pp 501–506

    Google Scholar 

  45. Richter S, Jones CN, Morari M (2012) Computational complexity certification for real-time mpc with input constraints based on the fast gradient method. IEEE Trans Autom Control 57(6):1391–1403

    Article  MathSciNet  MATH  Google Scholar 

  46. Patrinos P, Bemporad A (2014) An accelerated dual gradient-projection algorithm for embedded linear model predictive control. IEEE Trans Autom Control 59(1):18–33

    Article  MathSciNet  MATH  Google Scholar 

  47. Ghadimi E, Teixeira A, Shames I, Johansson M (2015) Optimal parameter selection for the alternating direction method of multipliers (admm): quadratic problems. IEEE Trans Autom Control 60(3):644–658

    Article  MathSciNet  MATH  Google Scholar 

  48. Raghunathan AU, Di Cairano S (2014) Optimal step-size selection in alternating direction method of multipliers for convex quadratic programs and model predictive control. In: Proceedings of the symposium on mathematical theory of networks and systems, pp 807–814

    Google Scholar 

  49. Raghunathan AU, Di Cairano S (2014) Infeasibility detection in alternating direction method of multipliers for convex quadratic programs. In: Proceedings of the 53rd IEEE conference on decision and control, pp 5819–5824

    Google Scholar 

  50. Raghunathan AU, Di Cairano S (2014) ADMM for convex quadratic programs: Q-linear convergence and infeasibility detection. arXiv:1411.7288

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Burns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burns, D.J., Danielson, C., Di Cairano, S., Laughman, C.R., Bortoff, S.A. (2018). Model Predictive Control of Multi-zone Vapor Compression Systems. In: Wen, J., Mishra, S. (eds) Intelligent Building Control Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-68462-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68462-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68461-1

  • Online ISBN: 978-3-319-68462-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics