An Approach to Dynamical Distance Geometry

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10589)


We introduce the dynamical distance geometry problem (dynDGP), where vertices of a given simple weighted undirected graph are to be embedded at different times t. Solutions to the dynDGP can be seen as motions of a given set of objects. In this work, we focus our attention on a class of instances where motion inter-frame distances are not available, and reduce the problem of embedding every motion frame as a static distance geometry problem. Some preliminary computational experiments are presented.



This work was partially supported by an INS2I-CNRS 2016 “PEPS” project. The authors are thankful to Franck Multon and Ludovic Hoyet for the fruitful discussions.


  1. 1.
    Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA J. Num. Anal. 8, 141–148 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Birgin, E.G., Martínez, J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bruneau, J., Dutra, T.B., Pettré, J.: Following behaviors: a model for computing following distances. Transp. Res. Procedia 2, 424–429 (2014)CrossRefGoogle Scholar
  5. 5.
    de Leeuw, J.: Convergence of the majorization method for multidimensional scaling. J. Classif. 5, 163–180 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformations from distance matrices. J. Comput. Chem. 14(1), 114–120 (1993)CrossRefGoogle Scholar
  7. 7.
    Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Num. Anal. 23, 707–716 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Grippo, L., Lampariello, F., Lucidi, S.: A truncated newton method with nonmonotone line search for uncontrained optimization. J. Optim. Theory Appl. 60, 401–419 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    LeNaour, T., Courty, N., Gibet, S.: Cinématique guidée par les distances. Rev. Electron. Francophone Inform. Graph. Assoc. Franaise Inform. Graph. 6(1), 15–25 (2012)Google Scholar
  10. 10.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Mucherino, A., de Freitas, R., Lavor, C.: Distance geometry and applications. Discrete Appl. Math. 197, 1–144 (2015). Special IssueCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods and Applications, 410 p., Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Multon, F., France, L., Cani-Gascuel, M.P., Debunne, G.: Computer animation of human walking: a survey. J. Vis. Comput. Anim. 10(1), 39–54 (1999)CrossRefGoogle Scholar
  14. 14.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)zbMATHGoogle Scholar
  15. 15.
    Omer, J.: A space-discretized mixed-integer linear model for air-conflict resolution with speed and heading maneuvers. Comput. Oper. Res. 58, 75–86 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Zhang, H., Hager, W.W.: A nonmonotone line search technique and its applications to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.IRISA, University of Rennes 1RennesFrance
  2. 2.Department of Mathematics, CFMFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations