An Approach to Dynamical Distance Geometry

  • Antonio MucherinoEmail author
  • Douglas S. Gonçalves
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10589)


We introduce the dynamical distance geometry problem (dynDGP), where vertices of a given simple weighted undirected graph are to be embedded at different times t. Solutions to the dynDGP can be seen as motions of a given set of objects. In this work, we focus our attention on a class of instances where motion inter-frame distances are not available, and reduce the problem of embedding every motion frame as a static distance geometry problem. Some preliminary computational experiments are presented.



This work was partially supported by an INS2I-CNRS 2016 “PEPS” project. The authors are thankful to Franck Multon and Ludovic Hoyet for the fruitful discussions.


  1. 1.
    Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA J. Num. Anal. 8, 141–148 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Birgin, E.G., Martínez, J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bruneau, J., Dutra, T.B., Pettré, J.: Following behaviors: a model for computing following distances. Transp. Res. Procedia 2, 424–429 (2014)CrossRefGoogle Scholar
  5. 5.
    de Leeuw, J.: Convergence of the majorization method for multidimensional scaling. J. Classif. 5, 163–180 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformations from distance matrices. J. Comput. Chem. 14(1), 114–120 (1993)CrossRefGoogle Scholar
  7. 7.
    Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Num. Anal. 23, 707–716 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Grippo, L., Lampariello, F., Lucidi, S.: A truncated newton method with nonmonotone line search for uncontrained optimization. J. Optim. Theory Appl. 60, 401–419 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    LeNaour, T., Courty, N., Gibet, S.: Cinématique guidée par les distances. Rev. Electron. Francophone Inform. Graph. Assoc. Franaise Inform. Graph. 6(1), 15–25 (2012)Google Scholar
  10. 10.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Mucherino, A., de Freitas, R., Lavor, C.: Distance geometry and applications. Discrete Appl. Math. 197, 1–144 (2015). Special IssueCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods and Applications, 410 p., Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Multon, F., France, L., Cani-Gascuel, M.P., Debunne, G.: Computer animation of human walking: a survey. J. Vis. Comput. Anim. 10(1), 39–54 (1999)CrossRefGoogle Scholar
  14. 14.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)zbMATHGoogle Scholar
  15. 15.
    Omer, J.: A space-discretized mixed-integer linear model for air-conflict resolution with speed and heading maneuvers. Comput. Oper. Res. 58, 75–86 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Zhang, H., Hager, W.W.: A nonmonotone line search technique and its applications to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.IRISA, University of Rennes 1RennesFrance
  2. 2.Department of Mathematics, CFMFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations