Skip to main content

Automatic Differentiation of Non-holonomic Fast Marching for Computing Most Threatening Trajectories Under Sensors Surveillance

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Abstract

We consider a two player game, where a first player has to install a surveillance system within an admissible region. The second player needs to enter the monitored area, visit a target region, and then leave the area, while minimizing his overall probability of detection. Both players know the target region, and the second player knows the surveillance installation details. Optimal trajectories for the second player are computed using a recently developed variant of the fast marching algorithm, which takes into account curvature constraints modeling the second player vehicle maneuverability. The surveillance system optimization leverages a reverse-mode semi-automatic differentiation procedure, estimating the gradient of the value function related to the sensor location in time \({\mathcal O}(N \ln N)\).

This work has been supported by the 662107-SWARMs-ECSEL-2014-1 European project.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    github.com/Mirebeau/HamiltonianFastMarching.

References

  1. Barbaresco, F., Monnier, B.: Minimal geodesics bundles by active contours: radar application for computation of most threathening trajectories areas & corridors. In: 10th European Signal Processing Conference, Tampere, pp. 1–4 (2000)

    Google Scholar 

  2. Barbaresco, F.: Computation of most threatening radar trajectories areas and corridors based on fast-marching & Level Sets. In: IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), Paris, pp. 51–58 (2011)

    Google Scholar 

  3. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Bikhauser, Bosto (1997)

    Book  MATH  Google Scholar 

  4. Bekkers, E.J., Duits, R., Mashtakov, A., Sanguinetti, G.R.: Data-driven sub-riemannian geodesics in SE(2). In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 613–625. Springer, Cham (2015). doi:10.1007/978-3-319-18461-6_49

    Google Scholar 

  5. Benmansour, F., Carlier, G., Peyré, G., Santambrogio, F.: Derivatives with respect to metrics and applications: subgradient marching algorithm. Numer. Math. 116(3), 357–381 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benmansour, F., Cohen, L.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vis. 92(2), 192–210 (2011)

    Article  Google Scholar 

  7. Chen, D., Mirebeau, J.-M., Cohen, L.D.: A new finsler minimal path model with curvature penalization for image segmentation and closed contour detection. In: Proceedings of CVPR 2016, Las Vegas, USA (2016)

    Google Scholar 

  8. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Amer. J. Math. 79, 497–516 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  9. Duits, R., Meesters, S.P.L., Mirebeau, J.-M., Portegies, J.M.: Optimal Paths for Variants of the 2D and 3D Reeds-Shepp. Car with Applications in Image Analysis (Preprint available on arXiv)

    Google Scholar 

  10. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  MATH  Google Scholar 

  11. Mirebeau, J.-M.: Anisotropic Fast-Marching on cartesian grids using Lattice Basis Reduction. SIAM J. Numer. Anal. 52(4), 1573–1599 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mirebeau, J.-M.: Anisotropic fast-marching on cartesian grids using Voronois first reduction of quadratic forms (preprint available on HAL)

    Google Scholar 

  13. Mirebeau, J.-M.: Fast Marching methods for Curvature Penalized Shortest Paths (preprint available on HAL)

    Google Scholar 

  14. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sethian, J., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations. Proc. Natl. Acad. Sci. 98(20), 11069–11074 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schürmann, A.: Computational geometry of positive definite quadratic forms, University Lecture Series (2009)

    Google Scholar 

  17. Strode, C.; Optimising multistatic sensor locations using path planning and game theory. In: IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), Paris, pp. 9–16 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Mirebeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mirebeau, JM., Dreo, J. (2017). Automatic Differentiation of Non-holonomic Fast Marching for Computing Most Threatening Trajectories Under Sensors Surveillance. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_91

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics