Skip to main content

Parallel Transport in Shape Analysis: A Scalable Numerical Scheme

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Abstract

The analysis of manifold-valued data requires efficient tools from Riemannian geometry to cope with the computational complexity at stake. This complexity arises from the always-increasing dimension of the data, and the absence of closed-form expressions to basic operations such as the Riemannian logarithm. In this paper, we adapt a generic numerical scheme recently introduced for computing parallel transport along geodesics in a Riemannian manifold to finite-dimensional manifolds of diffeomorphisms. We provide a qualitative and quantitative analysis of its behavior on high-dimensional manifolds, and investigate an application with the prediction of brain structures progression.

M. Louis and A. Bône—Equal contributions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61, 139–157 (2005)

    Article  Google Scholar 

  2. Durrleman, S., Allassonnière, S., Joshi, S.: Sparse adaptive parameterization of variability in image ensembles. Int. J. Comput. Vis. 101(1), 161–183 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fletcher, T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J. Math. Imaging Vis. 25(3), 423–444 (2006)

    Article  MathSciNet  Google Scholar 

  5. Lorenzi, M., Ayache, N., Pennec, X.: Schild’s ladder for the parallel transport of deformations in time series of images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 463–474. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22092-0_38

    Chapter  Google Scholar 

  6. Lorenzi, M., Pennec, X.: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration. Int. J. Comput. Vis. 105(2), 111–127 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Marco, L., Pennec, X.: Parallel transport with pole ladder: application to deformations of time series of images. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 68–75. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40020-9_6

    Chapter  Google Scholar 

  8. Louis, M., Charlier, B., Jusselin, P., Pal, S., Durrleman, S.: A fanning scheme for the parallel transport along geodesics on Riemannian manifolds, July 2017. https://hal.archives-ouvertes.fr/hal-01560787

  9. Micheli, M.: The differential geometry of landmark shape manifolds: metrics, geodesics, and curvature. Ph.D. thesis, Providence, RI, USA (2008). aAI3335682

    Google Scholar 

  10. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  11. Schiratti, J.B., Allassonnière, S., Colliot, O., Durrleman, S.: Learning spatiotemporal trajectories from manifold-valued longitudinal data. In: NIPS (2015)

    Google Scholar 

  12. Younes, L.: Jacobi fields in groups of diffeomorphisms and applications. Q. Appl. Math. 65(1), 113–134 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhang, M., Fletcher, P.: Probabilistic principal geodesic analysis. In: Advances in Neural Information Processing Systems, vol. 26, pp. 1178–1186 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Maxime Louis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Louis, M., Bône, A., Charlier, B., Durrleman, S., The Alzheimer’s Disease Neuroimaging Initiative. (2017). Parallel Transport in Shape Analysis: A Scalable Numerical Scheme. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics