Ferrari, U.: Learning maximum entropy models from finite-size data sets: a fast data-driven algorithm allows sampling from the posterior distribution. Phys. Rev. E 94, 023301 (2016)
CrossRef
Google Scholar
Stevenson, I.H., Kording, K.P.: How advances in neural recording affect data analysis. Nat. Neurosci. 14(2), 139–142 (2011)
CrossRef
Google Scholar
Schneidman, E., Berry, M., Segev, R., Bialek, W.: Weak pairwise correlations imply strongly correlated network states in a population. Nature 440, 1007 (2006)
CrossRef
Google Scholar
Peyrache, A., Dehghani, N., Eskandar, E.N., Madsen, J.R., Anderson, W.S., Donoghue, J.A., Hochberg, L.R., Halgren, E., Cash, S.S., Destexhe, A.: Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep. Proc. Nat. Acad. Sci. 109(5), 1731–1736 (2012)
CrossRef
Google Scholar
Hamilton, L.S., Sohl-Dickstein, J., Huth, A.G., Carels, V.M., Deisseroth, K., Bao, S.: Optogenetic activation of an inhibitory network enhances feedforward functional connectivity in auditory cortex. Neuron 80, 1066–1076 (2013)
CrossRef
Google Scholar
Tkacik, G., Marre, O., Amodei, D., Schneidman, E., Bialek, W., Berry, M.J.: Searching for collective behaviour in a network of real neurons. PloS Comput. Biol. 10(1), e1003408 (2014)
CrossRef
Google Scholar
Dehghani, N., Peyrache, A., Telenczuk, B., Le Van Quyen, M., Halgren, E., Cash, S.S., Hatsopoulos, N.G., Destexhe, A.: Dynamic balance of excitation and inhibition in human and monkey neocortex. Sci. Rep. 6 (2016). Article no: 23176. doi:10.1038/srep23176
Gardella, C., Marre, O., Mora, T.: A tractable method for describing complex couplings between neurons and population rate. Eneuro 3(4), 0160 (2016)
CrossRef
Google Scholar
Tavoni, G., Ferrari, U., Cocco, S., Battaglia, F.P., Monasson, R.: Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity. Netw. Neurosci. 0(0), 1–27 (2017). doi:10.1162/NETN_a_00014
Google Scholar
Jaynes, E.T.: On The rationale of maximum-entropy method. Proc. IEEE 70, 939 (1982)
CrossRef
Google Scholar
Ferrari, U., Obuchi, T., Mora, T.: Random versus maximum entropy models of neural population activity. Phys. Rev. E 95, 042321 (2017)
CrossRef
Google Scholar
Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cogn. Sci. 9, 147–169 (1985)
CrossRef
Google Scholar
Broderick, T., Dudik, M., Tkacik, G., Schapire, R.E., Bialek, W.: Faster solutions to the inverse pairwise Ising problem. arXiv:0712.2437 (2007)
Cocco, S., Monasson, R.: Adaptive cluster expansion for inferring Boltzmann machines with noisy data. Phys. Rev. Lett. 106, 090601 (2011)
CrossRef
Google Scholar
Sohl-Dickstein, J., Battaglino, P.B., DeWeese, M.R.: New method for parameter estimation in probabilistic models: minimum probability flow. Phys. Rev. Lett. 107, 220601 (2011)
CrossRef
Google Scholar
Renart, A., De La Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., Harris, K.D.: The asynchronous state in cortical circuits. Science 327(5965), 587–590 (2010)
CrossRef
Google Scholar
Amari, S.: Natural gradient works efficiently in learning. Neural Comput. 10, 251–276 (1998)
CrossRef
Google Scholar
Amari, S., Douglas, S.C.: Why natural gradient? Proc. IEEE 2, 1213–1216 (1998)
Google Scholar
Le Van Quyen, M., Muller, L.E., Telenczuk, B., Halgren, E., Cash, S., Hatsopoulos, N.G., Dehghani, N., Destexhe, A.: High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle. Proc. Nat. Acad. Sci. 113(33), 9363–93680 (2016)
CrossRef
Google Scholar