Skip to main content

Water Reuse in the Food Industry: Quality of Original Wastewater Before Treatments

  • Chapter
  • First Online:
Wastewater Treatment and Reuse in the Food Industry

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSCHEFO))

Abstract

This chapter introduces one of the most important emergencies in the world of food and non-food industries: the availability of clean and drinking water. Water use has more than tripled globally since 1950: water quality and its scarcity are increasingly recognised as one of the most important environmental threats to humankind. In addition, the food and beverage processing industry requires copious amounts of water. For these reasons, direct and indirect water reuse systems are becoming more and more interesting and promising technologies. Different reuse guidelines have been recently issued as the result of risk assessment and management approaches linked to health-based targets. Chemical and biological features of wastewaters originated from different food processing environments have to be carefully analysed and adequate countermeasures have to be taken on these bases in relation to the specific food processing activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These substances include fructose, glutose, sucrose, lactose, artificial sweeteners, fruit juice concentrates, flavouring agents, dissolved carbon dioxide/carbonic acid, bicarbonates, flavourings, colouring additives (caramel and synthetic dye-stuff), preservatives (phosphoric acid and tartaric acid) and mineral salts that are used during production.

  2. 2.

    These values are justified because of the presence of carbohydrates, mainly lactose, as well as less biodegradable proteins, lipids, minerals, high concentrations of suspended solids, suspended oils and grease easily degradable.

Abbreviations

BOD:

Biochemical oxygen demand

COD:

Chemical oxygen demand

FAO:

Food and Agriculture Organization

HACCP:

Hazard Analysis and Critical Control Point

SWW:

Slaughterhouses Wastewater

TSS:

Total suspended solids

UNICEF:

United Nations International Children’s Emergency Fund

US EPA:

United States Environmental Protection Agency

USA:

United States of America

WHO:

World Health Organization

References

  1. WHO/UNICEF (2015) Water, sanitation and hygiene—WASH Post (2015) WHO/UNICEF Joint Monitoring Programme (JMP) for water supply and sanitation. World Health Organization (WHO), Geneva, and the United Nations International Children’s Emergency Fund (UNICEF), New York

    Google Scholar 

  2. Skouteris G, Hermosilla D, López P, Negro C, Blanco A (2012) Anaerobic membrane bioreactors for wastewater treatment: a review. J Chem Eng 198–199:138–148. doi:10.1016/j.cej.2012.05.070

  3. UN-Water (2012) Managing water under uncertainty and risk. The United Nations World Water Development Report 4: World Water Assessment Programme (WWAP), Paris, France

    Google Scholar 

  4. Valta K, Moustakas K, Sotiropoulos A, Malamis D, Haralambous KJ (2016) Adaptation measures for the food and beverage industry to the impact of climate change on water availability. Desalin Water Treat 57(5):2336–2343. doi:10.1080/19443994.2015.1049407

    Article  Google Scholar 

  5. Food Drink Europe (2012) Data & trends of the European food and drink industry 2011. Food Drink Europe, Brussels. Available http://www.fooddrinkeurope.eu/uploads/publications_documents/Final_Data__Trends_30.4.2012.pdf. Accessed 30 Mar 2017

  6. Gardner-Outlaw T, Engleman R (1997) Sustaining water, easing scarcity: a second update. Population Action International, Washington, D.C

    Google Scholar 

  7. Valta K, Kosanovic T, Malamis D, Moustakas K, Loizidou M (2015) Overview of water usage and wastewater management in the food and beverage industry. Desalin Water Treat 53(12):3335–3347. doi:10.1080/19443994.2014.934100

    Article  CAS  Google Scholar 

  8. Hyder Consulting (2013) The Federation House Commitment Progress Report 2013. Waste & Resources Action Programme, Banbury. Available http://www.fdf.org.uk/industry/FHC-ANNUAL-REPORT-2013.pdf. Accessed 30 Mar 2017

  9. Coday BD, Xu P, Beaudry EG, Herron J, Lampi K, Hancock NT, Cath TY (2014) The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalin 333(1):23–35. doi:10.1016/j.desal.2013.11.014

    Article  CAS  Google Scholar 

  10. Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) (2008) Biological wastewater treatment. Principles, modelling and design. The International Water Association (IWA) Publishing, London

    Google Scholar 

  11. US EPA (2004) Effluent limitations guidelines and new source performance standards for the meat and poultry products point source category. Federal Register 69, 173:54476–54555. United States Environmental Protection Agency (US EPA), Washington, D.C

    Google Scholar 

  12. Simons GG, Bastiaanssen WW, Immerzeel WW (2015) Water reuse in river basins with multiple users: a literature review. J Hydrol 522:558–571. doi:10.1016/j.jhydrol.2015.01.016

    Article  Google Scholar 

  13. Ong CN (2016) Water reuse, emerging contaminants and public health: state-of-the-art analysis. Int J Water Resour D 32(4):514–525. doi:10.1080/07900627.2015.1096765

    Article  Google Scholar 

  14. Cheraghi M, Lorestani B, Yousefi N (2009) Effect of waste water on heavy metal accumulation in Hamedan Province Vegetables. Int J Bot 5:190–193

    Article  CAS  Google Scholar 

  15. Singh KP, Mohon D, Sinha S (2004) Impact assessment of treated/untreated wastewater toxicants discharge by sewage treatment plant on health, agricultural and environmental quality in waste water disposal area. Chemosph 55(2):227–255. doi:10.1016/j.chemosphere.2003.10.050

    Article  CAS  Google Scholar 

  16. Campbell CA, Davidson HR (1979) Effect of temperature, nitrogen fertilization and moisture stress on growth, assimilate distribution and moisture use by Manitou spring wheat. Can J Plant Sci 59(3):603–626. doi:10.4141/cjps79-098

    Article  CAS  Google Scholar 

  17. Rusan MJM, Hinnawi S, Rousan L (2007) Long term effect of waste water irrigation of forage crops on soil and plant quality parameters. Desalin 215:143–152. doi:10.1016/j.desal.2006.10.032

    Article  Google Scholar 

  18. Strauss M, Blumenthal UJ (1990) Human waste use in agriculture and aquiculture: utilization practices and health perspectives. IRCWD Report 09/90, p. 48. International Reference Centre for Waste Disposal (IRCWD), Duebendorf

    Google Scholar 

  19. Codex Alimentarius Commission (2006) Codex Alimentarius Commission—Procedural Manual, nineteenth edn. Joint FAO/WHO Food Standards Programme, the World Health Organization (WHO), Geneva, and the Food and Agriculture Organization (FAO) Rome

    Google Scholar 

  20. US EPA (2012) Guidelines for water reuse. EPA/600/R-12/618. US EPA, Office of Research and Development, Office of Water, Washington, D.C., National Risk Management Research Laboratory, Cincinnati, and United States Agency for International Development, Washington, D.C

    Google Scholar 

  21. WHO (2006) Guidelines for the safe use of wastewater, excreta and greywater. World Health Organization WHO, Geneva

    Google Scholar 

  22. Steduto P, Hsiao TC, Fereres E, Raes D (2012) Crop yield response to water. FAO Irrigation and Drainage paper 66. FAO, Rome

    Google Scholar 

  23. WHO (2004) The global burden of disease report: 2004 update. World Health Organization WHO, Geneva. Available http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/index.html. Accessed 30 Mar 2017

  24. Bustillo-Lecompte CF, Mehrvar M (2015) Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances. J Environ Manag 161:287–302. doi:10.1016/j.jenvman.2015.07.008

    Article  CAS  Google Scholar 

  25. Hoekstra AY, Chapagain AK (2006) Water footprints of nations: water use by people as a function of their consumption pattern. In: Craswell E, Bonnell M, Bossio D, Demuth S, Van De Giesen N (eds) Integrated assessment of water resources and global change, Springer, Netherlands. pp 35–48. doi:10.1007/978-1-4020-5591-1_3

  26. Dave D, Ghaly AE (2011) Meat spoilage mechanisms and preservation techniques: a critical review. Am J Agric Econ Biol Sci 6(4):486–510

    Article  CAS  Google Scholar 

  27. Mekonnen MM, Hoekstra AY (2012) A global assessment of the water footprint of farm animal products. Ecosyst 15(3):401–415. doi:10.1007/s10021-011-9517-8

    Article  CAS  Google Scholar 

  28. FAO (2013) Food outlook—biannual report on global food markets. FAO Trade and Market Division, Rome. Available, Italy. http://www.fao.org/docrep/019/i3473e/i3473e.pdf. Accessed 30 Mar 2017

  29. Pingali P (2007) Westernization of Asian diets and the transformation of food systems: implications for research and policy. Food Policy 32(3):281–298. doi:10.1016/j.foodpol.2006.08.001

    Article  Google Scholar 

  30. Wang LK, Hung YT, Lo HH, Yapijakis C (eds) (2006) Waste treatment in the food processing industry. CRC Press, Boca Raton

    Google Scholar 

  31. Bustillo-Lecompte CF, Mehrvar M, Quiñones-Bolaños E (2014) Cost-effectiveness analysis of TOC removal from slaughterhouse wastewater using combined anaerobic–aerobic and UV/H2O2 processes. J Environ Manag 134:145–152. doi:10.1016/j.jenvman.2013.12.035

  32. Gerbens-Leenes PW, Mekonnen MM, Hoekstra AY (2013) The water footprint of poultry, pork and beef: a comparative study in different countries and production systems. Water Resour Ind 1(2):25–36. doi:10.1016/j.wri.2013.03.001

    Article  Google Scholar 

  33. Wu PF, Mittal GS (2011) Characterization of provincially inspected slaughterhouse wastewater in Ontario, Canada. Can Biosyst Eng 54(6):9–18

    Google Scholar 

  34. Barrera M, Mehrvar M, Gilbride KA et al (2012) Photolytic treatment of organic constituents and bacterial pathogens in secondary effluent of synthetic slaughterhouse wastewater. Chem Eng Res Des 90(9):1335–1350. doi:10.1016/j.cherd.2011.11.018

    Article  CAS  Google Scholar 

  35. Mass DI, Masse L (2000) Characterization of wastewater from hog slaughterhouses in Eastern Canada and evaluation of their in-plant wastewater treatment systems. Can Agric Eng 42(3):139–146

    Google Scholar 

  36. Us EPA (2002) Development document for the proposed effluent limitations guidelines and standards for the meat and poultry products industry point source category (40 CFR 432). US EPA, Office of Water, Washington, D.C

    Google Scholar 

  37. Haroon H, Waseem A, Mahmood Q (2013) Treatment and reuse of wastewater from beverage industry. J Chem Soc Pak 35(1):5–10

    CAS  Google Scholar 

  38. Euromonitor (2014) Passport: global market information database. Euromonitor International. http://www.euromonitor.com

  39. Agana BA, Reeve D, Orbell JD (2013) Performance optimization of a 5 nm TiO2 ceramic membrane with respect to beverage production wastewater. Desalin 311:162–172. doi:10.1016/j.desal.2012.11.027

    Article  CAS  Google Scholar 

  40. Hsine EA, Benhammou A, Pons MN (2005) Water resources management in soft drink industry-water use and wastewater generation. Environ Technol 26(12):1309–1316. doi:10.1080/09593332608618605

    Article  CAS  Google Scholar 

  41. Nyilimbabazi N, Banadda N, Nhapi I (2011) Characterization of brewery wastewater for reuse in Kigali, Rwanda. Open Environ Eng J 4:89–96

    Article  CAS  Google Scholar 

  42. Fillaudeau L, Blanpain-Avet P, Daufin G (2006) Water, wastewater and waste management in brewing industries. J Clean Prod 14(5):463–471. doi:10.1016/j.jclepro.2005.01.002

    Article  Google Scholar 

  43. Simate GS, Cluett J, Iyuke SE Musapatika ET, Ndlovu S, Walubita LF, Alvarez AE (2011) The treatment of brewery wastewater for reuse: state of the art. Desalin 273(2):235–247. doi:10.1016/j.desal.2011.02.035

  44. Kanai M, Ferre V, Wakahara S, Yamamoto T, Moro M (2010) A novel combination of methane fermentation and MBR-Kubota submerged anaerobic membrane bioreactor process. Desalin 250(3):964–967. doi:10.1016/j.desal.2009.09.082

  45. Mohana S, Acharya BK, Madamwar D (2009) Distillery spent wash: treatment technologies and potential applications. J Hazard Mater 163(1):12–25. doi:10.1016/j.jhazmat.2008.06.079

    Article  CAS  Google Scholar 

  46. Satyawali Y, Balakrishnan M (2008) Treatment of distillery effluent in a membrane bioreactor (MBR) equipped with mesh filter. Sep Purif Technol 63(2):278–286. doi:10.1016/j.seppur.2008.05.008

    Article  CAS  Google Scholar 

  47. Hussain M, Cholette S, Castaldi RM (2008) An analysis of globalization forces in the wine industry: implications and recommendations for wineries. J Glob Market 21:33–47. doi:10.1300/J042v21n01_04

    Article  Google Scholar 

  48. Arcese G, Lucchetti MC, Martucci O (2012) Analysis of sustainability based on life cycle assessment: an empirical study of wine production. J Environ Sci Health B 1(5):1682–1689

    Google Scholar 

  49. Ruggieri E, Cadena J, Martinez-Blanco CM, Gasol CM, Rieradevall J, Gabarrell X, Gea T, Sort X, Sánchez A (2009) Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. J Clean Prod 17(9):830–838. doi:10.1016/j.jclepro.2008.12.005

    Article  Google Scholar 

  50. Bustamante MA, Moral R, Paredes C, Pérez-Espinosa A, Moreno-Caselles J, Pérez-Murcia MD (2008) Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manag 28(2):372–380. doi:10.1016/j.wasman.2007.01.013

    Article  CAS  Google Scholar 

  51. Devesa-Rey R, Vecino X, Varela-Alende JL, Barral MT, Cruz JM, Moldes AB (2011) Valorization of winery waste vs. the costs of not recycling. Waste Manag 31(11):2327–2335. doi:10.1016/j.wasman.2011.06.001

    Article  CAS  Google Scholar 

  52. Lucas MS, Peres JA, Li Puma G (2010) Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics. Sep Purif Technol 72(3):235–241. doi:10.1016/j.seppur.2010.01.016

    Article  CAS  Google Scholar 

  53. Mosteo R, Sarasa J, Ormad MP, Ovelleiro JL (2008) Sequential solar photo-Fenton-biological system for the treatment of winery wastewaters. J Agric Food Chem 56(16):7333–7338. doi:10.1021/jf8005678

    Article  CAS  Google Scholar 

  54. Chatzilazarou A, Katsoyannos E, Gortzi O, Lalas S, Paraskevopoulos Y, Dourtoglou E, Tsaknis J (2010) Removal of polyphenols from wine sludge using cloud point extraction. J Air Waste Manag Assoc 60(4):454–459. doi:10.3155/1047-3289.60.4.454

    Article  CAS  Google Scholar 

  55. Demirel B, Yenigun O, Onay TT (2005) Anaerobic treatment of dairy wastewaters: a review. Process Biochem 40(8):2583–2595. doi:10.1016/j.procbio.2004.12.015

    Article  CAS  Google Scholar 

  56. Rivas J, Prazeres AR, Carvalho F, Beltrán F (2010) Treatment of cheese whey wastewater: combined coagulation-flocculation and aerobic biodegradation. J Agric Food Chem 58(13):7871–7877. doi:10.1021/jf100602j

    Article  CAS  Google Scholar 

  57. Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445–446:385–396. doi:10.1016/j.scitotenv.2012.12.038

    Article  Google Scholar 

  58. Kasapgil B, Anderson GK, Ince O (1994) An investigation into the pretreatment of dairy wastewater prior to aerobic biological treatment. Water Sci Technol 29(9):205–212

    CAS  Google Scholar 

  59. Britz TJ, Van Der Merwe M, Riedel KHJ (1992) Influence of phenol additions on the efficiency of an anaerobic hybrid digester treating landfill leachate. Biotechnol Lett 14(4):323–328. doi:10.1007/BF01022332

    Article  CAS  Google Scholar 

  60. Balannec B, Vourch M, Rabiller-Baudry M, Chaufer B (2005) Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration. Sep Purif Technol 42(2):195–200. doi:10.1016/j.seppur.2004.07.013

    Article  CAS  Google Scholar 

  61. Mukhopadhyay R, Talukdar D, Chatterjee BP, Guha AK (2003) Whey processing with chitosan and isolation of lactose. Process Biochem 39(3):381–385. doi:10.1016/S0032-9592(03)00126-2

    Article  CAS  Google Scholar 

  62. Guillen-Jimenez E, Alvarez-Mateos P, Romero-Guzman F, Pereda-Marin J (2000) Bio-mineralization of organic matter as affected by pH. The evolution of ammonium and phosphates. Water Res 34(4):1215–1224. doi:10.1016/S0043-1354(99)00242-0

    Article  CAS  Google Scholar 

  63. Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manag 110:48–68. doi:10.1016/j.jenvman.2012.05.018

    Article  CAS  Google Scholar 

  64. Arumugam A, Sabarethinam PL (2008) Performance of a three-phase fluidized bed reactor with different support particles in treatment of dairy wastewater. ARPN J Eng Appl Sci 3(5):42–44

    Google Scholar 

  65. Jensen CR, Ørum JE, Pedersen SM, Andersen MN, Plauborg F, Liu F, Jacobsen SE (2014) A short overview of measures for securing water resources for irrigated crop production. J Agron Crop Sci 200(5):333–343. doi:10.1111/jac.12067

    Article  Google Scholar 

  66. Kroyer GT (1995) Impact of food processing on the environment—an overview. LWT Food Sci Technol 28(6):547–552. doi:10.1016/0023-6438(95)90000-4

  67. Smilanick JL, Mansour MF, Gabler FM, Sorenson D (2008) Control of citrus postharvest green mold and sour rot by potassium sorbate combined with heat and fungicides. Postharvest Biol Technol 47(2):226–238. doi:10.1016/j.postharvbio.2007.06.020

    Article  CAS  Google Scholar 

  68. Jonkers N, Sousa A, Galante-Oliveira S, Barroso CM, Kohler HPE, Giger W (2010) Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal. Environ Sci Pollut Res 17(4):834–843. doi:10.1007/s11356-009-0275-5

    Article  CAS  Google Scholar 

  69. Santiago DE, Pulido Melián E, Fernández Rodríguez C, Ortega Méndez JA, O. Pérez-Báez SO, Doña-Rodríguez JM (2011) Degradation and detoxification of banana postharvest treatment water using advanced oxidation techniques. Green Sustain Chem 1(3):7067,8. doi:10.4236/gsc.2011.13008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcella Barbera .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Barbera, M., Gurnari, G. (2018). Water Reuse in the Food Industry: Quality of Original Wastewater Before Treatments. In: Wastewater Treatment and Reuse in the Food Industry. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-68442-0_1

Download citation

Publish with us

Policies and ethics