Skip to main content

Chapter 6 Spinors

  • Chapter
  • First Online:
  • 7309 Accesses

Part of the book series: Universitext ((UTX))

Abstract

We saw in the previous chapter that gauge fields correspond to gauge bosons and are described by 1-forms or, dually, vector fields. In physics, there exist of course also matter particles, like electrons, quarks and neutrinos. These particles are fermions and are described by spinor fields (spinors). Like vector fields or tensor fields, spinors have a specific transformation behaviour under rotations. However, spinors do not transform directly under the orthogonal group, but under a certain double covering, called the (orthochronous) spin group. In the case of Minkowski spacetime, rotations correspond to Lorentz transformations. The corresponding spin group is the Lorentz spin group.

In many mathematical expositions the discussion of spinors is restricted to the Riemannian case, because in most situations, manifolds in differential geometry carry a Riemannian metric. The pseudo-Riemannian case, like the case of Minkowski spacetime, is discussed less often, even though it is very important for physics. Since we are ultimately interested in applications of differential geometry and gauge theory to physics, it seems worthwhile to study orthogonal groups, Clifford algebras, spin groups and spinors from a mathematical point of view also in the Lorentzian and general pseudo-Riemannian case.

This is a preview of subscription content, log in via an institution.

References

  1. Abe, K. et al. (The T2K Collaboration): First combined analysis of neutrino and antineutrino oscillations at T2K. arXiv:1701.00432

    Google Scholar 

  2. Adams, J.F.: On the non-existence of elements of Hopf invariant one. Ann. Math. 72, 20–104 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adams, J.F.: Vector fields on spheres. Ann. Math. 75, 603–632 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Argyres, P.C.: An introduction to global supersymmetry. Lecture notes, Cornell University 2001. Available at http://homepages.uc.edu/~argyrepc/cu661-gr-SUSY/index.html

    Google Scholar 

  5. Atiyah, M.F.: K-Theory. Notes by D.W. Anderson. W.A. Benjamin, New York/Amsterdam (1967)

    MATH  Google Scholar 

  6. Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond. A 308, 523–615 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3, 3–38 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baez, J.C.: The octonions. Bull. Am. Math. Soc. (N.S.) 39, 145–205 (2002); Erratum: Bull. Am. Math. Soc. (N.S.) 42, 213 (2005)

    Google Scholar 

  9. Baez, J., Huerta, J.: The algebra of grand unified theories. Bull. Am. Math. Soc. (N.S.) 47, 483–552 (2010)

    Google Scholar 

  10. Bailin, D., Love, A.: Introduction to Gauge Field Theory. Institute of Physics Publishing, Bristol/Philadelphia (1993)

    MATH  Google Scholar 

  11. Ball. P.: Nuclear masses calculated from scratch. Nature, published online 20 November 2008. doi:10.1038/news.2008.1246

    Google Scholar 

  12. Barut, A.O., Raczka, R.: Theory of Group Representations and Applications. Polish Scientific Publishers, Warszawa (1980)

    MATH  Google Scholar 

  13. Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten. Teubner Verlagsgesellschaft, Leipzig (1981)

    MATH  Google Scholar 

  14. Baum, H.: Eichfeldtheorie. Springer, Berlin/Heidelberg (2014)

    Book  MATH  Google Scholar 

  15. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin/Heidelberg (2004)

    MATH  Google Scholar 

  16. Bleecker, D.: Gauge Theory and Variational Principles. Addison-Wesley Publishing Company, Reading, MA (1981)

    MATH  Google Scholar 

  17. Bogolubov, N.N., Logunov, A.A., Todorov, I.T.: Introduction to Axiomatic Quantum Field Theory. W. A. Benjamin, Reading, MA (1975)

    Google Scholar 

  18. Borsanyi, Sz. et al: Ab initio calculation of the neutron-proton mass difference. Science 347(6229), 1452–1455 (2015)

    Google Scholar 

  19. Bott, M.R.: An application of the Morse theory to the topology of Lie-groups, Bull. Soc. Math. France 84, 251–281 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bourguignon, J.-P., Hijazi, O., Milhorat, J.-L., Moroianu, A., Moroianu, S.: A Spinorial Approach to Riemannian and Conformal Geometry. European Mathematical Society, Zürich (2015)

    Book  MATH  Google Scholar 

  21. Brambilla, N. et al.: QCD and strongly coupled gauge theories: challenges and perspectives. Eur. Phys. J. C 74, 2981 (2014)

    Article  Google Scholar 

  22. Branco, G.C., Lavoura, L., Silva, J.P.: CP Violation. Oxford University Press, Oxford (1999)

    Google Scholar 

  23. Bredon, G.E.: Introduction to Compact Transformation Groups. Academic Press, New York/London (1972)

    MATH  Google Scholar 

  24. Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Springer, Berlin/Heidelberg/New York (2010)

    Google Scholar 

  25. Bröcker, T., Jänich, K.: Einführung in die Differentialtopologie. Springer, Berlin/Heidelberg/New York (1990)

    MATH  Google Scholar 

  26. Bryant, R.L.: Metrics with exceptional holonomy. Ann. Math. 126, 525–576 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bryant, R.L.: Submanifolds and special structures on the octonians. J. Differ. Geom. 17, 185–232 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Budinich, R., Trautman, A.: The Spinorial Chessboard. Springer, Berlin/Heidelberg (1988)

    Book  MATH  Google Scholar 

  29. Bueno, A. et al.: Nucleon decay searches with large liquid Argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds. JHEP 0704, 041 (2007)

    Article  Google Scholar 

  30. Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. American Mathematical Society, Providence, RI (2009)

    Book  MATH  Google Scholar 

  31. CERN Press Release: CERN experiments observe particle consistent with long-sought Higgs boson. Available at http://press.cern/press-releases/2012/07/cern-experiments-observe-particle-consistent-long-sought-higgs-boson

  32. Chaichian, M., Nelipa, N.F.: Introduction to Gauge Field Theories. Springer, Berlin/Heidelberg/New York/Tokyo (1984)

    Book  Google Scholar 

  33. Cheng, T.-P., Li, L.-F.: Gauge Theory of Elementary Particle Physics. Oxford University Press, Oxford (1988)

    Google Scholar 

  34. Chevalley, C.: Theory of Lie Groups I. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  35. Chevalley, C.: The Algebraic Theory of Spinors and Clifford Algebras. Collected Works, Vol. 2. Springer, Berlin/Heidelberg (1997)

    Google Scholar 

  36. Chivukula, R.S.: The origin of mass in QCD. arXiv:hep-ph/0411198

    Google Scholar 

  37. Clay Mathematics Institute: Millenium problems. Yang–Mills and mass gap. Available at http://www.claymath.org/millennium-problems/yang--mills-and-mass-gap

  38. Costello, K.: Renormalization and Effective Field Theory. Mathematical Surveys and Monographs, Vol. 170. American Mathematical Society, Providence, RI (2011)

    Google Scholar 

  39. Darling, R.W.R.: Differential Forms and Connections. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  40. D’Auria, R., Ferrara, S., Lledó, M.A., Varadarajan, V.S.: Spinor algebras. J. Geom. Phys. 40, 101–129 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Derdzinski, A.: Geometry of the Standard Model of Elementary Particles. Springer, Berlin/Heidelberg (1992)

    Book  MATH  Google Scholar 

  42. Dissertori, G., Knowles, I., Schmelling, M.: Quantum Chromodynamics. High Energy Experiments and Theory. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  43. Drexlin, G., Hannen, V., Mertens, S., Weinheimer, C.: Current direct neutrino mass experiments. Adv. High Energy Phys. 2013, Article ID 293986 (2013)

    Article  Google Scholar 

  44. Dürr, S. et al.: Ab initio determination of light hadron masses. Science 322, 1224–1227 (2008)

    Article  Google Scholar 

  45. Duncan, A.: The Conceptual Framework of Quantum Field Theory. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  46. Dynkin, E.B.: Semisimple subalgebras of the semisimple Lie algebras. (Russian) Mat. Sbornik 30, 349–462 (1952); English translation: Am. Math. Soc. Transl. Ser. 2 6, 111–244 (1957)

    Google Scholar 

  47. Elliott, C.: Gauge Theoretic Aspects of the Geometric Langlands Correspondence. Ph.D. Thesis, Northwestern University (2016)

    Google Scholar 

  48. Englert, F., Brout R.: Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)

    Article  MathSciNet  Google Scholar 

  49. Figueroa-O’Farrill, J.: Majorana Spinors. Lecture Notes. University of Edinburgh (2015)

    Google Scholar 

  50. Flory, M., Helling, R.C., Sluka, C.: How I learned to stop worrying and love QFT. arXiv:1201.2714 [math-ph]

    Google Scholar 

  51. Folland, G.B.: Quantum Field Theory. A Tourist Guide for Mathematicians. American Mathematical Society, Providence, Rhodes Island (2008)

    Book  MATH  Google Scholar 

  52. Freed, D.S.: Classical Chern–Simons theory, 1. Adv. Math. 113, 237–303 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  53. Freed, D.S.: Five Lectures on Supersymmetry. American Mathematical Society, Providence, RI (1999)

    MATH  Google Scholar 

  54. Freedman, D.Z., Van Proeyen, A.: Supergravity. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  55. Friedrich, T.: Dirac Operators in Riemannian Geometry. American Mathematical Society, Providence, RI (2000)

    Book  MATH  Google Scholar 

  56. Fritzsch, H., Minkowski, P.: Unified interactions of leptons and hadrons. Ann. Phys. 93, 193–266 (1975)

    Article  MathSciNet  Google Scholar 

  57. Geiges, H.: An Introduction to Contact Topology. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  58. Georgi, H.: The state of the art – gauge theories. In: Carlson, C.E. (ed.) Particles and Fields – 1974: Proceedings of the Williamsburg Meeting of APS/DPF, pp. 575–582. AIP, New York (1975)

    Google Scholar 

  59. Georgi, H., Glashow, S.L.: Unity of all elementary-particle forces. Phys. Rev. Lett. 32, 438–441 (1974)

    Article  Google Scholar 

  60. Georgi, H.M., Glashow, S.L., Machacek, M.E., Nanopoulos, D.V.: Higgs Bosons from two-gluon annihilation in proton-proton collisions. Phys. Rev. Lett. 40 692 (1978)

    Article  Google Scholar 

  61. Georgi, H., Quinn, H.R., Weinberg, S.: Hierarchy of interactions in unified gauge theories. Phys. Rev. Lett. 33, 451–454 (1974)

    Article  Google Scholar 

  62. Giunti, C., Kim, C.W.: Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  63. Glashow, S.L.: Trinification of all elementary particle forces. In: 5th Workshop on Grand Unification, Providence, RI, April 12–14, 1984

    Google Scholar 

  64. Glashow, S.L., Iliopoulos, J., Maiani, L.: Weak interactions with lepton-hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970)

    Article  Google Scholar 

  65. Gleason, A.M.: Groups without small subgroups. Ann. Math. 56, 193–212 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  66. Grimus, W., Rebelo, M.N.: Automorphisms in gauge theories and the definition of CP and P. Phys. Rep. 281, 239–308 (1997)

    Article  MathSciNet  Google Scholar 

  67. Guralnik, G.S., Hagen, C.R., Kibble, T.W.B.: Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)

    Article  Google Scholar 

  68. Gürsey, F., Ramond, P., Sikivie, P.: A universal gauge theory model based on E6. Phys. Lett. B 60, 177–180 (1976)

    Article  Google Scholar 

  69. Haag, R.: Local Quantum Physics. Fields, Particles, Algebras. Springer, Berlin/ Heidelberg/New York (1996)

    Book  MATH  Google Scholar 

  70. Hall, B.C.: Lie Groups, Lie Algebras and Representations. An Elementary Introduction. Springer, Cham Heidelberg/New York/Dordrecht/London (2016)

    Google Scholar 

  71. Halzen, F., Martin, A.D.: Quarks and Leptons. An Introductory Course in Modern Particle Physics. Wiley, New York/Chichester/Brisbane/Toronto/Singapore (1984)

    Google Scholar 

  72. Hartanto, A., Handoko L.T.: Grand unified theory based on the SU(6) symmetry. Phys. Rev. D 71, 095013 (2005)

    Article  Google Scholar 

  73. Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  74. Hatcher, A.: Vector bundles and K-theory. Version 2.1, May 2009

    Google Scholar 

  75. Heeck, J.: Interpretation of lepton flavor violation. Phys. Rev. D 95, 015022 (2017)

    Article  Google Scholar 

  76. Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  MathSciNet  Google Scholar 

  77. Hilgert, J., Neeb, K.-H.: Structure and Geometry of Lie Groups. Springer, New York/ Dordrecht/Heidelberg/London (2012)

    Book  MATH  Google Scholar 

  78. Hirsch, M.W.: Differential Topology. Springer, New York/Berlin/Heidelberg (1997)

    Google Scholar 

  79. Hoddeson, L., Brown, L., Riordan, M., Dresden, M. (ed.): The Rise of the Standard Model: Particle Physics in the 1960s and 1970s. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  80. Hollowood, T.J.: Renormalization Group and Fixed Points in Quantum Field Theory. Springer, Heidelberg/New York/Dordrecht/London (2013)

    Book  MATH  Google Scholar 

  81. Husemoller, D.: Fibre Bundles. Springer, New York (1994)

    Book  MATH  Google Scholar 

  82. Klaczynski, L.: Haag’s Theorem in renormalisable quantum field theory. Ph.D. Thesis, Humboldt Universität zu Berlin (2015)

    Google Scholar 

  83. Knapp, A.W.: Lie Groups Beyond an Introduction. Birkhäuser, Boston/Basel/Berlin (2002)

    MATH  Google Scholar 

  84. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. I. Interscience Publishers, New York/London (1963)

    MATH  Google Scholar 

  85. Kounnas, C., Masiero, A., Nanopoulos, D.V., Olive, K.A.: Grand Unification with and Without Supersymmetry and Cosmological Implications. World Scientific, Singapore (1984)

    Google Scholar 

  86. Lancaster, T., Blundell, S. J.: Quantum Field Theory for the Gifted Amateur. Oxford University Press, Oxford (2014)

    Book  MATH  Google Scholar 

  87. Langacker, P.: Grand unified theories and proton decay. Phys. Rep. 72, 185–385 (1981)

    Article  Google Scholar 

  88. Lawson, H.B. Jr., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton, NJ (1989)

    MATH  Google Scholar 

  89. Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York/Heidelberg/Dordrecht/ London (2013)

    MATH  Google Scholar 

  90. Leigh, R.G., Strassler, M.J.: Duality of Sp(2N c ) and SO(N c ) supersymmetric gauge theories with adjoint matter. Phys. Lett. B 356, 492–499 (1995)

    Article  MathSciNet  Google Scholar 

  91. Martin, S.P.: A supersymmetry primer. arXiv:hep-ph/9709356

    Google Scholar 

  92. Mayer, M.E.: Review: David D. Bleecker, Gauge theory and variational principles. Bull. Am. Math. Soc. (N.S.) 9, 83–92 (1983)

    Google Scholar 

  93. Meinrenken, E.: Clifford Algebras and Lie Theory. Springer, Berlin/Heidelberg (2013)

    Book  MATH  Google Scholar 

  94. Milnor, J.: On manifolds homeomorphic to the 7-sphere. Ann. Math. 64, 399–405 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  95. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman and Company, New York (1973)

    Google Scholar 

  96. Mohapatra, R.N.: Unification and Supersymmetry. The Frontiers of Quark-Lepton Physics. Springer, New York/Berlin/Heidelberg (2003)

    MATH  Google Scholar 

  97. Montgomery, D., Zippin, L.: Small subgroups of finite-dimensional groups. Ann. Math. 56, 213–241 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  98. Moore, J.D.: Lectures on Seiberg–Witten Invariants. Springer, Berlin/Heidelberg/New York (2001)

    MATH  Google Scholar 

  99. Morgan, J.W.: The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds. Princeton University Press, Princeton, NJ (1996)

    MATH  Google Scholar 

  100. Mosel, U.: Fields, Symmetries, and Quarks. Springer, Berlin/Heidelberg (1999)

    Book  MATH  Google Scholar 

  101. Naber, G.L.: Topology, Geometry and Gauge Fields. Foundations. Springer, New York (2011)

    MATH  Google Scholar 

  102. Naber, G.L.: Topology, Geometry and Gauge Fields. Interactions. Springer, New York (2011)

    MATH  Google Scholar 

  103. Nakahara, M.: Geometry, Topology and Physics, 2nd edn. IOP Publishing Ltd, Bristol/ Philadelphia (2003)

    MATH  Google Scholar 

  104. O’Raifeartaigh, L.: Group Structure of Gauge Theories. Cambridge University Press, Cambridge (1986)

    Book  MATH  Google Scholar 

  105. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  106. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Particle listings. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  107. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Particle listings. Neutrino mixing. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  108. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 1. Physical constants. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  109. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 10. Electroweak model and constraints on new physics. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  110. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 12. The CKM quark-mixing matrix. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  111. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 16. Grand unified theories. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  112. Pich, A.: The Standard Model of electroweak interactions. arXiv:1201.0537 [hep-ph]

    Google Scholar 

  113. Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Westview Press, Boulder, Colorado (1997)

    MATH  Google Scholar 

  114. Robinson, M.: Symmetry and the Standard Model. Mathematics and Particle Physics. Springer, New York/Dordrecht/Heidelberg/London (2011)

    Book  MATH  Google Scholar 

  115. Roe, J.: Elliptic Operators, Topology and Asymptotic Methods. Longman Scientific & Technical, Harlow (1988)

    MATH  Google Scholar 

  116. Roman, P.: Introduction to Quantum Field Theory. Wiley, New York/London/Sydney/Toronto (1969)

    MATH  Google Scholar 

  117. Royal Swedish Academy of Sciences: The official web site of the nobel prize. https://www.nobelprize.org/nobel_prizes/physics/

  118. Royal Swedish Academy of Sciences: Asymptotic freedom and quantum chromodynamics: the key to the understanding of the strong nuclear forces. Advanced information on the Nobel Prize in Physics, 5 October 2004. https://www.nobelprize.org/nobel_prizes/physics/laureates/2004/advanced.html

  119. Royal Swedish Academy of Sciences: Class of Physics. Broken symmetries. Scientific Background on the Nobel Prize in Physics 2008. https://www.nobelprize.org/nobel_prizes/physics/laureates/2008/advanced.html

  120. Royal Swedish Academy of Sciences: Class of Physics. The BEH-mechanism, interactions with short range forces and scalar particles. Scientific Background on the Nobel Prize in Physics 2013. https://www.nobelprize.org/nobel_prizes/physics/laureates/2013/advanced.html

  121. Royal Swedish Academy of Sciences: Class of Physics. Neutrino oscillations. Scientific Background on the Nobel Prize in Physics 2015. https://www.nobelprize.org/nobel_prizes/physics/laureates/2015/advanced.html

  122. Rudolph, G., Schmidt, M.: Differential Geometry and Mathematical Physics. Part I. Manifolds, Lie Groups and Hamiltonian Systems. Springer Netherlands, Dordrecht (2013)

    Google Scholar 

  123. Rudolph, G., Schmidt, M.: Differential Geometry and Mathematical Physics. Part II. Fibre Bundles, Topology and Gauge Fields. Springer Netherlands, Dordrecht (2017)

    Google Scholar 

  124. Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  125. Schwartz, M.D.: Quantum Field Theory and the Standard Model. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  126. Seiberg, N.: Five dimensional SUSY field theories, non-trivial fixed points and string dynamics. Phys. Lett. B 388, 753–760 (1996)

    Article  MathSciNet  Google Scholar 

  127. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994). Erratum: Nucl. Phys. B 430, 485–486 (1994)

    MATH  Google Scholar 

  128. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  129. Sepanski, M.R.: Compact Lie Groups. Springer Science+Business Media LLC, New York (2007)

    Book  MATH  Google Scholar 

  130. Serre, J.-P.: Lie Algebras and Lie Groups. 1964 Lectures given at Harvard University. Springer, Berlin/Heidelberg (1992)

    Google Scholar 

  131. Slansky, R.: Group theory for unified model building. Phys. Rep. 79, 1–128 (1981)

    Article  MathSciNet  Google Scholar 

  132. Srednicki, M.: Quantum Field Theory. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  133. Steenrod, N.: The Topology of Fibre Bundles. Princeton University Press, Princeton (1951)

    Book  MATH  Google Scholar 

  134. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Princeton University Press, Princeton, NJ (2000)

    MATH  Google Scholar 

  135. Tao, T.: Hilbert’s Fifth Problem and Related Topics. Graduate Studies in Mathematics, Vol. 153. American Mathematical Society, Providence, RI (2014)

    Google Scholar 

  136. Taubes, C.H.: Differential Geometry. Bundles, Connections, Metrics and Curvature. Oxford University Press, Oxford (2011)

    Book  MATH  Google Scholar 

  137. Thomson, M.: Modern Particle Physics. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  138. Vafa, C., Zwiebach, B.: N = 1 dualities of SO and USp gauge theories and T-duality of string theory. Nucl. Phys. B 506, 143–156 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  139. van den Ban, E.P.: Notes on quotients and group actions. Fall 2006. Universiteit Utrecht

    Google Scholar 

  140. Van Proeyen, A.: Tools for supersymmetry. arXiv:hep-th/9910030

    Google Scholar 

  141. van Vulpen, I.: The Standard Model Higgs boson. Part of the Lecture Particle Physics II, University of Amsterdam Particle Physics Master 2013–2014

    Google Scholar 

  142. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Springer, New York (2010)

    Google Scholar 

  143. Weinberg, S.: The Quantum Theory of Fields, Vol. I. Foundations. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  144. Weinberg, S.: The Quantum Theory of Fields, Vol. II. Modern Applications. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  145. Weinberg, S.: The Quantum Theory of Fields, Vol. III. Supersymmetry. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  146. Wess, J., Bagger, J.: Supersymmetry and Supergravity, 2nd edn. Princeton University Press, Princeton, NJ (1992)

    MATH  Google Scholar 

  147. Wilczek, F.: Decays of heavy vector mesons into Higgs particles. Phys. Rev. Lett. 39, 1304 (1977)

    Article  Google Scholar 

  148. Witten, E.: Quest for unification. arXiv:hep-ph/0207124

    Google Scholar 

  149. Witten, E.: Chiral ring of Sp(N) and SO(N) supersymmetric gauge theory in four dimensions. Chin. Ann. Math. 24, 403 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  150. Witten, E.: Newton lecture 2010: String theory and the universe. Available at http://www.iop.org/resources/videos/lectures/page_44292.html Cited 20 Nov 2016

  151. Yamamoto, K.: SU(7) Grand Unified Theory. Ph.D. thesis, Kyoto University (1981)

    Google Scholar 

  152. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  153. Ziller, W.: Lie Groups. Representation theory and symmetric spaces. Lecture Notes, University of Pennsylvania, Fall 2010. Available at https://www.math.upenn.edu/~wziller/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamilton, M.J.D. (2017). Chapter 6 Spinors. In: Mathematical Gauge Theory. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-68439-0_6

Download citation

Publish with us

Policies and ethics