Valuing Others: Evidence from Economics, Developmental Psychology, and Neurobiology



Human social skills are widely studied among very different disciplines. In this chapter, we review, discuss, and relate evidence concerning the process of valuing others’ perspectives, preferences, and behaviors from an economic, psychological, and neurobiological viewpoint. This process of valuing others (or other-regarding preferences) can be understood as weighing others’ preferences to adapt our own behavior and achieve adequate social interaction. We first review economic research related to decision-making in social contexts, with emphasis on how decision-making has integrated other-regarding preferences into the decision-making algorithm. By means of social and developmental psychology research, we then review how social skills develop from identification to understanding others. Finally, we discuss the neurobiological mechanisms underlying social skills and social decision-making, focusing on those systems that can participate in processes of valuing others preferences. As a conclusion, we highlight five points that we believe an interdisciplinary approach should take into account. We thus intend to generate a starting point for building a more extensive explicatory bridge among the different disciplines that study complex human social behavior.


Neuroeconomics Decision-making Other-regarding preferences Mentalization Theory of mind Social cognition Interdisciplinary approach Game theory 



This work was supported by Comisión Nacional de Investigación Científica y Tecnológica CONICYT (Grant FONDECYT 11405268 to CR-S, Grant FONDECYT Inicio 11140535 to PB and Grant PCHA/DoctoradoNacional/2014-21140043 to PS-I).


  1. 1.
    Friedman M. Essays in positive economics. Chicago: University of Chicago Press; 1953.Google Scholar
  2. 2.
    Stigler G, Becker G. De Gustibus Non Est Disputandum. Am Econ Rev. 1977;67(2):76–90.Google Scholar
  3. 3.
    Ashraf N, Camerer CF, Loewenstein G. Adam Smith, behavioral economist. J Econ Perspect. 2005;19(3):131–45.CrossRefGoogle Scholar
  4. 4.
    Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica JSTOR. 1979;47(2):263–91.CrossRefGoogle Scholar
  5. 5.
    O’Donoghue T, Rabin M. Doing it now or later. Am Econ Rev. 1999;89(1):103–24.CrossRefGoogle Scholar
  6. 6.
    Laibson D. golden eggs and hyperbolic discounting. Q J Econ. 1997;112(2):443–78.CrossRefGoogle Scholar
  7. 7.
    Berg J, Dickhaut J, McCabe K. Trust, reciprocity, and social history. Games Econ Behav. 1995;10(1):122–42.CrossRefGoogle Scholar
  8. 8.
    Cox JC. How to identify trust and reciprocity. Games Econ Behav. 2004;46(2):260–81.CrossRefGoogle Scholar
  9. 9.
    Falk A, Kosfeld M. The hidden costs of control. Am Econ Rev. 2006;96(5):1611–30.CrossRefGoogle Scholar
  10. 10.
    Sheremeta RM, Zhang J. Three-player trust game with insider communication. Econ Inq. 2014;52(2):576–91.CrossRefGoogle Scholar
  11. 11.
    Heyes A, List JA. Supply and demand for discrimination: strategic revelation of own characteristics in a trust game. Am Econ Rev. 2016;106(5):319–23.CrossRefGoogle Scholar
  12. 12.
    Fehr E, Gächter S. Cooperation and punishment in public goods experiments. Am Econ Rev. 2000;90(4):980–94.CrossRefGoogle Scholar
  13. 13.
    Reuben E, Riedl A. Enforcement of contribution norms in public good games with heterogeneous populations. Games Econ Behav. 2013;77(1):122–37.CrossRefGoogle Scholar
  14. 14.
    Oprea R, Charness G, Friedman D. Continuous time and communication in a public-goods experiment. J Econ Behav Organ. 2014;108:212–23.CrossRefGoogle Scholar
  15. 15.
    Brañas-Garza P, Espín AM, Exadaktylos F, Herrmann B. Fair and unfair punishers coexist in the ultimatum game. Sci Rep. 2015;4(1):6025.CrossRefGoogle Scholar
  16. 16.
    Nowak MA. Fairness versus reason in the ultimatum game. Science. 2000;289(5485):1773–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Güth W, Kocher MG. More than thirty years of ultimatum bargaining experiments: motives, variations, and a survey of the recent literature. J Econ Behav Organ. 2014;108:396–409.CrossRefGoogle Scholar
  18. 18.
    Fehr E, Gächter S. Altruistic punishment in humans. Nature. 2002;415(6868):137–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Bolton GE, Ockenfels A. ERC: a theory of equity, reciprocity, and competition. Am Econ Rev. 2000;90(1):166–93.CrossRefGoogle Scholar
  20. 20.
    Fehr E, Schmidt K. A Theory of fairness, competition and cooperation. Q J Econ. 1999;114(August):817–68.CrossRefGoogle Scholar
  21. 21.
    Rabin M. Incorporating fairness into game theory and economics. Am Econ Rev. 1993;83:1281–302.Google Scholar
  22. 22.
    Falk A, Fischbacher U. A theory of reciprocity. Games Econ Behav. 2006;54(2):293–315.CrossRefGoogle Scholar
  23. 23.
    Dufwenberg M, Kirchsteiger G. A theory of sequential reciprocity. Games Econ Behav. 2004;47(2):268–98.CrossRefGoogle Scholar
  24. 24.
    Falk A, Fehr E, Fischbacher U. On the nature of fair behavior. Econ Inq. 2003;41(1):20–6.CrossRefGoogle Scholar
  25. 25.
    Andreoni J, Barton B, Bernheim BD, Aydin D, Naecker J. When fair isn’t fair: sophisticated time inconsistency in social preferences. Work Pap. 2016;1996:58.Google Scholar
  26. 26.
    Loewenstein G, Rick S, Cohen JD. Neuroeconomics. Annu Rev Psychol. 2008;59:647–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Damasio A. Feelings of emotion and the self. Ann N Y Acad Sci. 2003 Oct;1001:253–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Kahneman D. Thinking, fast and slow. New York: Macmillan and Company; 2011.Google Scholar
  29. 29.
    King-Casas B, Chiu PH. Understanding interpersonal function in psychiatric illness through multiplayer economic games. Biol Psychiatry. 2012;72(2):119–25.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Declerck CH, Boone C, Emonds G. When do people cooperate? The neuroeconomics of prosocial decision making. Brain Cogn. 2013;81(1):95–117.PubMedCrossRefGoogle Scholar
  31. 31.
    Billeke P, Aboitiz F. Social cognition in schizophrenia: from social stimuli processing to social engagement. Front Psychiatry. 2013;4(February):1–12.Google Scholar
  32. 32.
    Steinbeis N, Bernhardt BC, Singer T. Impulse control and underlying functions of the left DLPFC mediate age-related and age-independent individual differences in strategic social behavior. Neuron. 2012;73(5):1040–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Andreoni J, Miller J. Giving according to GARP: an experimental test of the consistency of preferences for altruism. Econometrica. 2002;70(2):737–53.CrossRefGoogle Scholar
  34. 34.
    Fehr E, Camerer CF. Social neuroeconomics: the neural circuitry of social preferences. Trends Cogn Sci. 2007;11:419–27.Google Scholar
  35. 35.
    Hein G, Morishima Y, Leiberg S, Sul S, Fehr E. The brains functional network architecture reveals human motives. Science. 2016;351(6277):1074–8.PubMedCrossRefGoogle Scholar
  36. 36.
    McAuliffe K, Blake PR, Steinbeis N, Warneken F. The developmental foundations of human fairness. Nat Hum Behav. 2017;1(2):42.CrossRefGoogle Scholar
  37. 37.
    Dalgleish T, Walsh ND, Mobbs D, Schweizer S, van Harmelen A-L, Dunn B, et al. Social pain and social gain in the adolescent brain: a common neural circuitry underlying both positive and negative social evaluation. Sci Rep. 2017;7(February 2016):42010.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ibáñez A, Billeke P, de la Fuente L, Salamone P, García AM, Melloni M. Reply: Towards a neurocomputational account of social dysfunction in neurodegenerative disease. Brain. 2017;140(3):e15.PubMedGoogle Scholar
  39. 39.
    Melloni M, Billeke P, Baez S, Hesse E, de la Fuente L, Forno G, et al. Your perspective and my benefit: multiple lesion models of self-other integration strategies during social bargaining. Brain. 2016;139(11):3022–40.CrossRefGoogle Scholar
  40. 40.
    Baars B, Gage N. Social cognition: perceiving the mental states of others. In: Cognition, brain and consciousness: introduction to cognitive neuroscience. 2nd ed. San Diego, CA: Elsevier; 2010.Google Scholar
  41. 41.
    Penn DC, Povinelli DJ. On the lack of evidence that non-human animals possess anything remotely resembling a “theory of mind”. Philos Trans R Soc Lond Ser B Biol Sci. 2007;362(January):731–44.CrossRefGoogle Scholar
  42. 42.
    Povinelli DJ, Vonk J. Chimpanzee minds: suspiciously human? Trends Cogn Sci. 2003;7(4):157–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Aboitiz FA. Brain for speech. A view from evolutionary neuroanatomy. London: Palgrave Macmillan; 2017.CrossRefGoogle Scholar
  44. 44.
    Johnson MH. Interactive specialization: a domain-general framework for human functional brain development? Dev Cogn Neurosci. 2011;1(1):7–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Emery NJ. The eyes have it: the neuroethology, function and evolution of social gaze. Neurosci Biobehav Rev. 2000;24(6):581–604.PubMedCrossRefGoogle Scholar
  46. 46.
    Bertenthal BI, Proffitt DR, Cutting JE. Infant sensitivity to figural coherence in biomechanical motions. J Exp Child Psychol. 1984;37(2):213–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Pavlova M, Sokolov A. Orientation specificity in biological motion perception. Percept Psychophys. 2000;62(5):889–99.PubMedCrossRefGoogle Scholar
  48. 48.
    Simion F, Regolin L, Bulf H. A predisposition for biological motion in the newborn baby. Proc Natl Acad Sci U S A. 2008;105(2):809–13.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Macchi Cassia V, Simion F, Umiltaa C. Face preference at birth: the role of an orienting mechanism. Dev Sci. 2001;4(1):101–8.CrossRefGoogle Scholar
  50. 50.
    Farroni T, Csibra G, Simion F, Johnson MH. Eye contact detection in humans from birth. Proc Natl Acad Sci. 2002;99(14):9602–5.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Farroni T, Mansfield EM, Lai C, Johnson MH. Infants perceiving and acting on the eyes: tests of an evolutionary hypothesis. J Exp Child Psychol. 2003;85(3):199–212.PubMedCrossRefGoogle Scholar
  52. 52.
    Meltzoff AN, Moore MK. Imitation of facial and manual gestures by human neonates. Published by: American Association for the Advancement of Science Stable. URL: 1977;198(4312):75–8.
  53. 53.
    Jones W, Klin A. Attention to eyes is present but in decline in 2-6-month-old infants later diagnosed with autism. Nature. 2013;504(7480):427–31.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Turati C, Valenza E, Leo I, Simion F. Three-month-olds’ visual preference for faces and its underlying visual processing mechanisms. J Exp Child Psychol. 2005;90(3):255–73.PubMedCrossRefGoogle Scholar
  55. 55.
    Macchi Cassia V, Bulf H, Quadrelli E, Proietti V. Age-related face processing bias in infancy: evidence of perceptual narrowing for adult faces. Dev Psychobiol. 2014;56(2):238–48.PubMedCrossRefGoogle Scholar
  56. 56.
    Luyster RJ, Powell C, Tager-Flusberg H, C a N. Neural measures of social attention across the first years of life: characterizing typical development and markers of autism risk. Dev Cogn Neurosci. 2014;8:131–43.PubMedCrossRefGoogle Scholar
  57. 57.
    De Haan M, Johnson MH, Halit H. Development of face-sensitive event-related potentials during infancy. In: De Haan M, editor. Infant EEG and event-related potentials. 1st ed. New York: Psychology Press; 2007.Google Scholar
  58. 58.
    Pena M, Arias D, Dehaene-Lambertz G. Gaze following is accelerated in healthy preterm infants. Psychol Sci. 2014;25(10):1884–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Soto-Icaza P, Aboitiz F, Billeke P. Development of social skills in children: neural and behavioral evidence for the elaboration of cognitive models. Front Neurosci. 2015;9(September):1–16.Google Scholar
  60. 60.
    Haan M De. Introduction to infant EEG and event-related potentials. In: Haan M, editor. Infant EEG and event-related potentials. New York, USA: Psychology Press Ltd New York; 2002. p. 39–76. Google Scholar
  61. 61.
    Luck SJ. Ten simple rules for designing and interpreting ERP experiments University of Iowa. In: Handy TC, editor. Event related potentials: a methods handbook. Cambridge, MA: MIT Press; 2004.Google Scholar
  62. 62.
    Csibra G, Kushnerenko E, Grossmann T. Electrophysiological methods in studying infant cognitive development. In: Nelson CA, Luciana M, editors. Handbook of developmental cognitive neuroscience. Cambridge, MA: MIT Press; 2008. p. 1–50.Google Scholar
  63. 63.
    Hileman CM, Henderson H, Mundy P, Newell L, Jaime M. Developmental and individual differences on the P1 and N170 ERP components in children with and without autism. Dev Neuropsychol. 2013;36(2):214–36.CrossRefGoogle Scholar
  64. 64.
    Itier RJ. N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cereb Cortex. 2004;14(2):132–42.PubMedCrossRefGoogle Scholar
  65. 65.
    Courchesne E, Ganz L, Norcia a M. Event-related brain potentials to human faces in infants. Child Dev. 1981;52(3):804–11.PubMedCrossRefGoogle Scholar
  66. 66.
    Dawson G, Webb SJ, McPartland J. Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Dev Neuropsychol. 2005;27(3):403–24.PubMedCrossRefGoogle Scholar
  67. 67.
    de Haan M, CA N. Brain activity differentiates face and object processing in 6-month-old infants. Dev Psychol. 1999;35(4):1113–21.PubMedCrossRefGoogle Scholar
  68. 68.
    Elsabbagh M, Volein A, Csibra G, Holmboe K, Garwood H, Tucker L, et al. Neural correlates of eye gaze processing in the infant broader autism phenotype. Biol Psychiatry. 2009;65(1):31–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Johnson MH, Griffin R, Csibra G, Halit H, Farroni T, de Haan M, et al. The emergence of the social brain network: evidence from typical and atypical development. Dev Psychopathol. 2005;17(3):599–619.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Balas BJ, Nelson CA, Westerlund A, Vogel-Farley V, Riggins T, Kuefner D. Personal familiarity influences the processing of upright and inverted faces in infants. Front Hum Neurosci. 2010;4(February):1.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Bretherton I. The origins of attachment theory: John Bowlby and Mary Ainsworth. Dev Psychol. 1992;28(5):759–75.CrossRefGoogle Scholar
  72. 72.
    Tronick EZ, Cohn JF. Infant-mother face-to-face interaction: age and gender differences in coordination and the occurrence of miscoordination. Child Dev. 1989;60(1):85.PubMedCrossRefGoogle Scholar
  73. 73.
    Harlow HF, Zimmermann RR. Affectional response in the infant monkey: orphaned baby monkeys develop a strong and persistent attachment to inanimate surrogate mothers. Science. 1959;130(3373):421–32.PubMedCrossRefGoogle Scholar
  74. 74.
    Mundy P, Card J, Fox N. EEG correlates of the development of infant joint attention skills. Dev Psychobiol. 2000;36:325–38.PubMedCrossRefGoogle Scholar
  75. 75.
    Charman T. Why is joint attention a pivotal skill in autism? Philos Trans R Soc Lond Ser B Biol Sci. 2003;358(January):315–24.CrossRefGoogle Scholar
  76. 76.
    Morgan B, Maybery M, Durkin K. Weak central coherence, poor joint attention, and low verbal ability: independent deficits in early autism. Dev Psychol. 2003;39(4):646–56.PubMedCrossRefGoogle Scholar
  77. 77.
    Striano T, Reid VM, Hoehl S. Neural mechanisms of joint attention in infancy. Eur J Neurosci. 2006;23(10):2819–23.PubMedCrossRefGoogle Scholar
  78. 78.
    Lachat F, Hugueville L, Lemaréchal J-D, Conty L, George N. Oscillatory brain correlates of live joint attention: a dual-EEG study. Front Hum Neurosci. 2012;6(June):156.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Hopkins WD, Taglialatela JP. Initiation of joint attention is associated with morphometric variation in the anterior cingulate cortex of chimpanzees (Pan troglodytes). Am J Primatol. 2013;75(5):441–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Charman T, Baron-Cohen S, Swettenham J, Baird G, Cox A, Drew A. Testing joint attention, imitation, and play as infancy precursors to language and theory of mind. Cogn Dev. 2000;15(4):481–98.CrossRefGoogle Scholar
  81. 81.
    Bakeman R, Adamson LB. Coordinating attention to people and objects in mother-infant and peer-infant interaction. Child Dev. 1984;55(4):1278–89.PubMedCrossRefGoogle Scholar
  82. 82.
    Kopp F, Lindenberger U. Effects of joint attention on long-term memory in 9-month-old infants: an event-related potentials study. Dev Sci. 2011;14(4):660–72.PubMedCrossRefGoogle Scholar
  83. 83.
    Striano T, Reid VM. Social cognition in the first year. Trends Cogn Sci. 2006;10(10):471–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Hirotani M, Stets M, Striano T, Friederici AD. Joint attention helps infants learn new words: event-related potential evidence. Neuroreport. 2009;20(6):600–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Wimmer H, Perner J. Beliefs about beliefs: representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition. 1983;13(1):103–28.PubMedCrossRefGoogle Scholar
  86. 86.
    Baron-Cohen S, Leslie AM, Frith U. Does the autistic child have a “theory of mind”? Cognition. 1985;21(1):37–46.PubMedCrossRefGoogle Scholar
  87. 87.
    Auer DP. Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the “resting” brain. Magn Reson Imaging. 2008;26(7):1055–64.PubMedCrossRefGoogle Scholar
  88. 88.
    Grosse Wiesmann C, Schreiber J, Singer T, Steinbeis N, Friederici AD. White matter maturation is associated with the emergence of theory of mind in early childhood. Nat Commun. 2017;8:14692.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Premack D, Woodruff G. Does the chimpanzee have a theory of mind. Behav Brain Sci. 1978;1:515–26.CrossRefGoogle Scholar
  90. 90.
    Perner J, Roessler J. From infants’ to children’s appreciation of belief. Trends Cogn Sci. 2012;16:519–25.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Baillargeon R, Scott RM, He Z. False-belief understanding in infants. Trends Cogn Sci. 2010;14(3):110–8.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Choi YJ, Luo Y. 13-Month-olds’ understanding of social interactions. Psychol Sci. 2015;26(3):274–83.PubMedCrossRefGoogle Scholar
  93. 93.
    Kovács ÁM, Téglás E, Endress AD. The social sense: susceptibility to others’ beliefs in human infants and adults. Science. 2010;330(6012):1830–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Southgate V, Senju a CG. Action anticipation through attribution of false belief by 2-year-olds. Psychol Sci. 2007;18(7):587–92.PubMedCrossRefGoogle Scholar
  95. 95.
    SAJ B, Bernstein DM. What can children tell us about hindsight bias: a fundamental constraint on perspective–taking? Soc Cogn. 2007;25(1):98–113.CrossRefGoogle Scholar
  96. 96.
    Bloom P, German TP. Two reasons to abandon the false belief task as a test of theory of mind. Cognition. 2000;77:25–31.CrossRefGoogle Scholar
  97. 97.
    Surian L, Caldi S, Sperber D. Attribution of beliefs by 13-month-old infants. Psychol Sci. 2007;18(7):580–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Moll H, Meltzoff AN. How does it look? Level 2 perspective-taking at 36 months of age. Child Dev. 2011;82(2):661–73.PubMedCrossRefGoogle Scholar
  99. 99.
    Aichhorn M, Perner J, Kronbichler M, Staffen W, Ladurner G. Do visual perspective tasks need theory of mind? NeuroImage. 2006;30(3):1059–68.PubMedCrossRefGoogle Scholar
  100. 100.
    Moll H, Tomasello M. Level 1 perspective-taking at 24 months of age. Br J Dev Psychol. 2006;24(3):603–13.CrossRefGoogle Scholar
  101. 101.
    Hamilton AF de C, Brindley R, Frith U. Visual perspective taking impairment in children with autistic spectrum disorder. Cognition. 2009;113(1):37–44.CrossRefGoogle Scholar
  102. 102.
    Moll H, Kadipasaoglu D. The primacy of social over visual perspective-taking. Front Hum Neurosci. 2013;7(September):558.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Schaafsma SM, Pfaff DW, Spunt RP, Adolphs R. Deconstructing and reconstructing theory of mind. Trends Cogn Sci. 2015;19(2):65–72.PubMedCrossRefGoogle Scholar
  104. 104.
    Dunbar RIM, Shultz S. Evolution in the social brain. Science. 2007;317(5843):1344–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Fehr E, Fischbancher U. Third-party punishment and social norms. Evol Hum Behav. 2004;25(2):63–87.CrossRefGoogle Scholar
  106. 106.
    Camerer CF, Fehr E. When does “economic man” dominate social behavior? Science. 2006;311(5757):47–52.PubMedCrossRefGoogle Scholar
  107. 107.
    Krueger F, Grafman J, McCabe K. Neural correlates of economic game playing. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1511):3859–74.CrossRefGoogle Scholar
  108. 108.
    Lee D. Game theory and neural basis of social decision making. Nat Neurosci. 2008;11(4):404–9.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Johnson ND, Mislin AA. Trust games: a meta-analysis. J Econ Psychol. 2011;32(5):865–89.CrossRefGoogle Scholar
  110. 110.
    Camerer CF, Loewenstein G, Prelec D. Neuroeconomics: How neuroscience can inform economics. J Econ Lit. 2005;43(1):9–64. Google Scholar
  111. 111.
    Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 2006;7(4):268–77.PubMedCrossRefGoogle Scholar
  112. 112.
    McCabe K, Houser D, Ryan L, Smith V, Trouard T. A functional imaging study of cooperation in two-person reciprocal exchange. Proc Natl Acad Sci U S A. 2001;98:11832–5.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Rilling JK, Sanfey AG, Aronson JA, Nystrom LE, Cohen JD. The neural correlates of theory of mind within interpersonal interactions. NeuroImage. 2004;22(4):1694–703.PubMedCrossRefGoogle Scholar
  114. 114.
    Delgado MR, Frank RH, Phelps EA. Perceptions of moral character modulate the neural systems of reward during the trust game. Nat Neurosci. 2005;8:1611–8.PubMedCrossRefGoogle Scholar
  115. 115.
    King-Casas B, Tomlin D, Anen C, Camerer CF, Quartz SR, Montague PR. Getting to know you: reputation and trust in a two-person economic exchange. Science. 2005;308:78–83.PubMedCrossRefGoogle Scholar
  116. 116.
    Delgado MR, Li J, Schiller D, E a P. The role of the striatum in aversive learning and aversive prediction errors. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1511):3787–800.CrossRefGoogle Scholar
  117. 117.
    Baumgartner T, Heinrichs M, Vonlanthen A, Fischbacher U, Fehr E. Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron. 2008;58(4):639–50.PubMedCrossRefGoogle Scholar
  118. 118.
    Zak PJ, Kurzban R, Ahmadi S, Swerdloff RS, Park J, Efremidze L, et al. Testosterone administration decreases generosity in the ultimatum game. PLoS One. 2009;4(12):e8330.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. Oxytocin increases trust in humans. Nature. 2005;435(June):673–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Aspé-sánchez M, Moreno M, Rivera MI, Rossi A. Oxytocin and vasopressin receptor gene polymorphisms: role in social and psychiatric traits. Front Neurosci. 2016;9(January):510.PubMedPubMedCentralGoogle Scholar
  121. 121.
    van den Bos W, Güroğlu B, van den Bulk BG, Rombouts SA, Crone E. Better than expected or as bad as you thought? The neurocognitive development of probabilistic feedback processing. Front Hum Neurosci. 2009;3(December):52.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Mitchell JP. Activity in right temporo-parietal junction is not selective for theory-of-mind. Cereb Cortex. 2008;18(2):262–71.PubMedCrossRefGoogle Scholar
  123. 123.
    Billeke P, Boardman S, Doraiswamy PM. Social cognition in major depressive disorder: a new paradigm? Transl Neurosci. 2013;4(4):437–47.CrossRefGoogle Scholar
  124. 124.
    Billeke P. The more I get to know you, the more I distrust you? Non-linear relationship between social skills and social behavior. Front Psychiatry. 2016;7:49.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    de Vignemont F, Singer T. The empathic brain: how, when and why? Trends Cogn Sci. 2006;10:435–41.PubMedCrossRefGoogle Scholar
  126. 126.
    Shenhav A, Botvinick MM, Cohen JD. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron. 2013;79(2):217–40.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Ebitz RB, Platt ML, Ebitz RB, Platt ML. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal Article Neuronal Activity in Primate Dorsal Anterior Cingulate Cortex Signals Task Conflict and Predicts Adjustments in Pu. Neuron. 2015;85(3):628–40.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Billeke P, Zamorano F, López T, Rodriguez C, Cosmelli D, Aboitiz F. Someone has to give in: theta oscillations correlate with adaptive behavior in social bargaining. Soc Cogn Affect Neurosci. 2014;9(12):2041–8.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Billeke P, Zamorano F, Cosmelli D, Aboitiz F. Oscillatory brain activity correlates with risk perception and predicts social decisions. Cereb Cortex. 2013;23(12):2872–83.PubMedCrossRefGoogle Scholar
  130. 130.
    Ibáñez MI, Sabater-Grande G, Barreda-Tarrazona I, Mezquita L, López-Ovejero S, Villa H, et al. Take the money and run: psychopathic behavior in the trust game. Front Psychol. 2016;7(November):1–15.Google Scholar
  131. 131.
    Chang LJ, Smith A, Dufwenberg M, Sanfey AG. Triangulating the neural, psychological, and economic bases of guilt aversion. Neuron. 2011;70(3):560–72.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Yoshimura S, Okamoto Y, Onoda K, Matsunaga M, Ueda K, Suzuki S, et al. Rostral anterior cingulate cortex activity mediates the relationship between the depressive symptoms and the medial prefrontal cortex activity. J Affect Disord. 2010;122(1–2):76–85.PubMedCrossRefGoogle Scholar
  133. 133.
    Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3:1049–56.PubMedCrossRefGoogle Scholar
  134. 134.
    Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303:1157–62.PubMedCrossRefGoogle Scholar
  135. 135.
    Rilling JK, Sanfey AG. The neuroscience of social decision-making. Annu Rev Psychol. 2011;62:23–48.PubMedCrossRefGoogle Scholar
  136. 136.
    Camerer CF. Behavioural studies of strategic thinking in games. Trends Cogn Sci. 2003;7:225–31.PubMedCrossRefGoogle Scholar
  137. 137.
    Cherry T, Frykblom P, Shogren J. Hardnose the Dictator. Am Econ Rev. 2002;92(4):1218–22.Google Scholar
  138. 138.
    Moll J, Krueger F, Zahn R, Pardini M, de Oliveira-Souza R, Grafman J. Human fronto-mesolimbic networks guide decisions about charitable donation. Proc Natl Acad Sci U S A. 2006;103(42):15623–8.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Wu S-W, Delgado MR, Maloney LT. The neural correlates of subjective utility of monetary outcome and probability weight in economic and in motor decision under risk. J Neurosci. 2011;31(24):8822–31.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Hoffman E, McCabe K, Shachat K, Smith V. Preferences, property rights, and anonymity in bargaining games. Games Econ Behav. 1994;7:346–80.CrossRefGoogle Scholar
  141. 141.
    Hutcherson CA, Bushong B, Rangel A. A neurocomputational model of altruistic choice and its implications. Neuron. 2015;87(2):451–62.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Raposo A, Vicens L, Clithero JA, Dobbins IG, Huettel SA. Contributions of frontopolar cortex to judgments about self, others and relations. Soc Cogn Affect Neurosci. 2011;6(3):260–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Kable JW, Glimcher PW. The neurobiology of decision: consensus and controversy. Neuron. 2009;63(6):733–45.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Ullsperger M, Fischer AG, Nigbur R, Endrass T. Neural mechanisms and temporal dynamics of performance monitoring. Trends Cogn Sci. 2014;18(5):259–67.PubMedCrossRefGoogle Scholar
  145. 145.
    Rilling J, Gutman D, Zeh T, Pagnoni G, Berns G, Kilts C. A neural basis for social cooperation. Neuron. 2002;35:395–405.PubMedCrossRefGoogle Scholar
  146. 146.
    McClure EB, Parrish JM, Nelson EE, Easter J, Thorne JF, Rilling JK, et al. Responses to conflict and cooperation in adolescents with anxiety and mood disorders. J Abnorm Child Psychol. 2007;35(4):567–77.PubMedCrossRefGoogle Scholar
  147. 147.
    Sanfey AG, Rilling JK, Aronson JA, Nystrom LE, Cohen JD. The neural basis of economic decision-making in the ultimatum game. Science. 2003;300(5626):1755–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Spitzer M, Fischbacher U, Herrnberger B, Grön G, Fehr E. The neural signature of social norm compliance. Neuron. 2007;56(1):185–96.PubMedCrossRefGoogle Scholar
  149. 149.
    Apps MAJ, Rushworth MFS, Chang SWC. The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron. 2016;90(4):692–707.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Shenhav A, Straccia MA, Botvinick MM, Cohen JD. Dorsal anterior cingulate and ventromedial prefrontal cortex have inverse roles in both foraging and economic choice. Cogn Affect Behav Neurosci. 2016;16(6):1127–39.PubMedCrossRefGoogle Scholar
  151. 151.
    Wittmann MK, Kolling N, Akaishi R, Chau BKH, Brown JW, Nelissen N, et al. Predictive decision making driven by multiple time-linked reward representations in the anterior cingulate cortex. Nat Commun. 2016;7:12327.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Kolling N, Wittmann MK, Behrens TEJ, Boorman ED, Mars RB, Rushworth MFS. Value, search, persistence and model updating in anterior cingulate cortex. Nat Neurosci. 2016;19(10):1280–5.PubMedCrossRefGoogle Scholar
  153. 153.
    Wittmann MK, Kolling N, Faber NS, Scholl J, Nelissen N, MFS R. Self-other mergence in the frontal cortex during cooperation and competition. Neuron. 2016;91(2):482–93.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Ruff CC, Fehr E. The neurobiology of rewards and values in social decision making. Nat Rev Neurosci. 2014;15(8):549–62.PubMedCrossRefGoogle Scholar
  155. 155.
    Apps MAJ, Lesage E, Ramnani N. Vicarious reinforcement learning signals when instructing others. J Neurosci. 2015;35(7):2904–13.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Abu-Akel A, Shamay-Tsoory S. Neuroanatomical and neurochemical bases of theory of mind. Neuropsychologia. 2011;49(11):2971–84.PubMedCrossRefGoogle Scholar
  157. 157.
    Schurz M, Radua J, Aichhorn M, Richlan F, Perner J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev. 2014;42:9–34.PubMedCrossRefGoogle Scholar
  158. 158.
    Saxe R, Xiao D-K, Kovacs G, Perrett DI, Kanwisher N. A region of right posterior superior temporal sulcus responds to observed intentional actions. Neuropsychologia. 2004;42(11):1435–46.PubMedCrossRefGoogle Scholar
  159. 159.
    Billeke P, Zamorano F, Chavez M, Cosmelli D, Aboitiz F. Functional network dynamics in alpha band correlate with social bargaining. PLoS One. 2014;9(10):e109829.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Billeke P, Armijo A, Castillo D, López T, Zamorano F, Cosmelli D, et al. Paradoxical expectation: oscillatory brain activity reveals social interaction impairment in schizophrenia. Biol Psychiatry. 2015;78(6):421–31.PubMedCrossRefGoogle Scholar
  161. 161.
    Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3):306–24.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci. 2016;113:12574–9.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Carter RM, Bowling DL, Reeck C, S a H. A distinct role of the temporal-parietal junction in predicting socially guided decisions. Science. 2012;337(6090):109–11.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Charness G, Rabin M. Understanding social preferences with simple tests. Q J Econ. 2002;117(3):817–69.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.División de Neurociencias (NeuroCICS), Centro de Investigación en Compleijidad Social, Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
  2. 2.Interdisciplinary Center of NeurosciencePontificia Universidad Católica de ChileSantiagoChile
  3. 3.Centro de Investigación y Mejoramiento de la Educación (CIME), Facultad de PsicologíaUniversidad del DesarrolloConcepciónChile

Personalised recommendations