Advertisement

Many-Body Effects in Fragmented, Depleted, and Condensed Bosonic Systems in Traps and Optical Cavities by MCTDHB and MCTDH-X

  • Ofir E. Alon
  • Raphael Beinke
  • Christoph Bruder
  • Lorenz S. Cederbaum
  • Shachar Klaiman
  • Axel U. J. Lode
  • Kaspar Sakmann
  • Marcus Theisen
  • Marios C. Tsatsos
  • Storm E. Weiner
  • Alexej I. StreltsovEmail author
Conference paper

Abstract

The many-body physics of trapped Bose-Einstein condensates (BECs) is very rich and demanding. During the past year of the MCTDHB project at the HLRS we continued to shed further light on it with the help of the MultiConfigurational Time-Dependent Hartree for Bosons (MCTDHB) method and using the MCTDHB and MCTDH-X software packages. Indeed, our results on which we report below span a realm of many-body effects in fragmented, depleted, and even in fully condensed BECs. Our findings include: (1) fragmented superradiance of a BEC trapped in an optical cavity; (2) properties of phantom (fragmented) vortices in trapped BECs; (3) dynamics of a two-dimensional trapped BEC described by the Bose-Hubbard Hamiltonian with MCTDH-X; (4) overlap of exact and Gross-Pitaevskii wave-functions in trapped BECs; (5) properties of the uncertainty product of an out-of-equilibrium trapped BEC; (6) many-body excitations and de-excitations in trapped BECs and relation to variance; and (7) many-body effects in the excitation spectrum of weakly-interacting BECs in finite one-dimensional optical lattices. These are all appealing and fundamental many-body results made through the kind allocation of computer resources by the HLRS to the MCTDHB project. Finally, we put forward some future developments and research plans, as well as further many-body perspectives.

Notes

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. OEA acknowledges funding by the Israel Science Foundation (Grant No. 600/15). RB acknowledges financial support by the IMPRS-QD (International Max Planck Research School for Quantum Dynamics), the Landes-graduiertenförderung Baden-Württemberg, and the Minerva Foundation. AUJL and CB acknowledge financial support by the Swiss SNF and the NCCR Quantum Science and Technology. MCT acknowledges financial support by FAPESP.

References

  1. 1.
    A.I. Streltsov, O.E. Alon, L.S. Cederbaum, General variational many-body theory with complete self-consistency for trapped bosonic systems. Phys. Rev. A 73, 063626 (2006)CrossRefGoogle Scholar
  2. 2.
    A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Role of excited states in the splitting of a trapped interacting Bose-Einstein condensate by a time-dependent barrier. Phys. Rev. Lett. 99, 030402 (2007)CrossRefGoogle Scholar
  3. 3.
    O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Unified view on multiconfigurational time propagation for systems consisting of identical particles. J. Chem. Phys. 127, 154103 (2007)CrossRefGoogle Scholar
  4. 4.
    O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Multiconfigurational time-dependent Hartree method for bosons: many-body dynamics of bosonic systems. Phys. Rev. A 77, 033613 (2008)CrossRefGoogle Scholar
  5. 5.
    K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Exact quantum dynamics of a bosonic Josephson junction. Phys. Rev. Lett. 103, 220601 (2009)CrossRefGoogle Scholar
  6. 6.
    A.U.J. Lode, K. Sakmann, O.E. Alon, L.S. Cederbaum, A.I. Streltsov, Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type. Phys. Rev. A 86, 063606 (2012)CrossRefGoogle Scholar
  7. 7.
    A.U.J. Lode, The multiconfigurational time-dependent Hartree method for bosons with internal degrees of freedom: theory and composite fragmentation of multi-component Bose-Einstein condensates. Phys. Rev. A 93, 063601 (2016)CrossRefGoogle Scholar
  8. 8.
    H.-D. Meyer, F. Gatti, G.A. Worth (eds.), Multidimensional Quantum Dynamics: MCTDH Theory and Applications (Wiley-VCH, Weinheim, 2009)Google Scholar
  9. 9.
    N.P. Proukakis, S.A. Gardiner, M.J. Davis, M.H. Szymanska (eds.), Quantum Gases: Finite Temperature and Non-equilibrium Dynamics. Cold Atoms Series, vol. 1 (Imperial College Press, London, 2013)Google Scholar
  10. 10.
    A.U.J. Lode, K. Sakmann, R.A. Doganov, J. Grond, O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Numerically-exact Schrödinger dynamics of closed and open many-boson systems with the MCTDHB package, in High Performance Computing in Science and Engineering ‘13: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2013, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2013), pp. 81–92Google Scholar
  11. 11.
    S. Klaiman, A.U.J. Lode, K. Sakmann, O.I. Streltsova, O.E. Alon, L.S. Cederbaum, A.I. Streltsov, Quantum many-body dynamics of trapped bosons with the MCTDHB package: towards new Horizons with novel physics, in High Performance Computing in Science and Engineering ‘14: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2014, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2015), pp. 63–86Google Scholar
  12. 12.
    O.E. Alon, V.S. Bagnato, R. Beinke, I. Brouzos, T. Calarco, T. Caneva, L.S. Cederbaum, M.A. Kasevich, S. Klaiman, A.U.J. Lode, S. Montangero, A. Negretti, R.S. Said, K. Sakmann, O.I. Streltsova, M. Theisen, M.C. Tsatsos, S.E. Weiner, T. Wells, A.I. Streltsov, MCTDHB physics and technologies: excitations and vorticity, single-shot detection, measurement of fragmentation, and optimal control in correlated ultra-cold bosonic many-body systems, in High Performance Computing in Science and Engineering ‘15: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2015, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2016), pp. 23–50Google Scholar
  13. 13.
    O.E. Alon, R. Beinke, L.S. Cederbaum, M.J. Edmonds, E. Fasshauer, M.A. Kasevich, S. Klaiman, A.U.J. Lode, N.G. Parker, K. Sakmann, M.C. Tsatsos, A.I. Streltsov, Vorticity, variance, and the vigor of many-body phenomena in ultracold quantum systems: MCTDHB and MCTDH-X, in High Performance Computing in Science and Engineering ‘16: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2016, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2016), pp. 79–96Google Scholar
  14. 14.
    A.I. Streltsov, K. Sakmann, A.U.J. Lode, O.E. Alon, L.S. Cederbaum, The multiconfigurational time-dependent Hartree for Bosons Package, version 2.3, Heidelberg (2013)Google Scholar
  15. 15.
    A.I. Streltsov, L.S. Cederbaum, O.E. Alon, K. Sakmann, A.U.J. Lode, J. Grond, O.I. Streltsova, S. Klaiman and R. Beinke, The multiconfigurational time-dependent Hartree for Bosons Package, version 3.x, Heidelberg/Kassel (2006-Present), http://mctdhb.org
  16. 16.
    A.I. Streltsov, O.I. Streltsova, The multiconfigurational time-dependent Hartree for Bosons Laboratory, version 1.5, http://MCTDHB-lab.com
  17. 17.
    A.U.J. Lode, M.C. Tsatsos, E. Fasshauer, MCTDH-X: The multiconfigurational time-dependent Hartree for indistinguishable particles software, http://ultracold.org; http://mctdh.bf; http://schroedinger.org (2016)
  18. 18.
    A.U.J. Lode, C. Bruder, Fragmented superradiance of a Bose-Einstein condensate in an optical cavity. Phys. Rev. Lett. 118, 013603 (2017)CrossRefGoogle Scholar
  19. 19.
    S.E. Weiner, M.C. Tsatsos, L.S. Cederbaum, A.U.J. Lode, Phantom vortices: hidden angular momentum in ultracold dilute Bose-Einstein condensates. Sci. Rep. 7, 40122 (2017)CrossRefGoogle Scholar
  20. 20.
    A.U.J. Lode, C. Bruder, Dynamics of Hubbard Hamiltonians with the multiconfigurational time-dependent Hartree method for indistinguishable particles. Phys. Rev. A 94, 013616 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Klaiman, L.S. Cederbaum, Overlap of exact and Gross-Pitaevskii wave functions in Bose-Einstein condensates of dilute gases. Phys. Rev. A 94, 063648 (2016)CrossRefGoogle Scholar
  22. 22.
    S. Klaiman, A.I. Streltsov, O.E. Alon, Uncertainty product of an out-of-equilibrium Bose-Einstein condensate. J. Phys.: Conf. Ser. 826, 012020 (2017)Google Scholar
  23. 23.
    M. Theisen, A.I. Streltsov, Many-body excitations and deexcitations in trapped ultracold bosonic clouds. Phys. Rev. A 94, 053622 (2016)CrossRefGoogle Scholar
  24. 24.
    R. Beinke, S. Klaiman, L.S. Cederbaum, A.I. Streltsov, O.E. Alon, Many-body effects in the excitation spectrum of weakly-interacting Bose-Einstein condensates in one-dimensional optical lattices. Phys. Rev. A 95, 063602 (2017)CrossRefGoogle Scholar
  25. 25.
    K. Sakmann, M. Kasevich, Single-shot simulations of dynamic quantum many-body systems. Nat. Phys. 12, 451 (2016)CrossRefGoogle Scholar
  26. 26.
    R. Beinke, S. Klaiman, L.S. Cederbaum, A.I. Streltsov, O.E. Alon, Many-body tunneling dynamics of Bose-Einstein condensates and vortex states in two spatial dimensions. Phys. Rev. A 92, 043627 (2015)CrossRefGoogle Scholar
  27. 27.
    M.C. Tsatsos, M.J. Edmonds, N.G. Parker, Transition from vortices to solitonic vortices in trapped atomic Bose-Einstein condensates. Phys. Rev. A 94, 023627 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Klaiman, O.E. Alon, Variance as a sensitive probe of correlations. Phys. Rev. A 91, 063613 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Klaiman, A.I. Streltsov, O.E. Alon, Uncertainty product of an out-of-equilibrium many-particle system. Phys. Rev. A 93, 023605 (2016)CrossRefGoogle Scholar
  30. 30.
    E. Fasshauer, A.U.J. Lode, Multiconfigurational time-dependent Hartree method for fermions: implementation, exactness, and few-fermion tunneling to open space. Phys. Rev. A 93, 033635 (2016)CrossRefGoogle Scholar
  31. 31.
    A.U.J. Lode, B. Chakrabarti, V.K.B. Kota, Many-body entropies, correlations, and emergence of statistical relaxation in interaction quench dynamics of ultracold bosons. Phys. Rev. A 92, 033622 (2015)CrossRefGoogle Scholar
  32. 32.
    T. Wells, A.U.J. Lode, V.S. Bagnato, M.C. Tsatsos, Vortex reconnections in anisotropic trapped three-dimensional Bose-Einstein condensates. J. Low Temp. Phys. 180, 133 (2015)CrossRefGoogle Scholar
  33. 33.
    M.C. Tsatsos, A.U.J. Lode, Resonances and dynamical fragmentation in a stirred Bose-Einstein condensate. J. Low Temp. Phys. 181, 171 (2015)CrossRefGoogle Scholar
  34. 34.
    A.U.J. Lode, S. Klaiman, O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Controlling the velocities and number of emitted particles in the tunneling to open space dynamics. Phys. Rev. A 89, 053620 (2014)CrossRefGoogle Scholar
  35. 35.
    A.U.J. Lode, A.I. Streltsov, K. Sakmann, O.E. Alon, L.S. Cederbaum, How an interacting many-body system tunnels through a potential barrier to open space. Proc. Natl. Acad. Sci. USA 109, 13521 (2012)CrossRefGoogle Scholar
  36. 36.
    A.U.J. Lode, Tunneling Dynamics in Open Ultracold Bosonic Systems (Springer Theses, Springer, 2015). ISBN 978-3-319-07085-8CrossRefzbMATHGoogle Scholar
  37. 37.
    I. Březinova, A.U.J. Lode, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, J. Burgdörfer, Wave chaos as signature for depletion of a Bose-Einstein condensate. Phys. Rev. A 86, 013630 (2012)CrossRefGoogle Scholar
  38. 38.
    I. Březinova, A.U.J. Lode, A.I. Streltsov, L.S. Cederbaum, O.E. Alon, L.A. Collins, B.I. Schneider, J. Burgdörfer, Elastic scattering of a Bose-Einstein condensate at a potential landscape. J. Phys. Conf. Ser. 488, 012032 (2014)CrossRefGoogle Scholar
  39. 39.
    O.E. Alon, A.I. Streltsov, K. Sakmann, A.U.J. Lode, J. Grond, L.S. Cederbaum, Recursive formulation of the multiconfigurational time-dependent Hartree method for fermions, bosons and mixtures thereof in terms of one-body density operators. Chem. Phys. 401, 2 (2012)CrossRefGoogle Scholar
  40. 40.
    D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998)CrossRefGoogle Scholar
  41. 41.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)CrossRefGoogle Scholar
  42. 42.
    R. Jördens, N. Strohmaier, K. Günter, H. Moritz, T. Esslinger, A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204 (2008)CrossRefGoogle Scholar
  43. 43.
    J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, L. Mathey, Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields. Nat. Phys. 9, 738 (2013)CrossRefGoogle Scholar
  44. 44.
    P. Hauke, O. Tielemann, A. Celi, C. Ölschläger, J. Simonet, J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M. Lewenstein, A. Eckardt, Non-abelian gauge fields and topological insulators in Shaken optical lattices. Phys. Rev. Lett. 109, 145301 (2012)CrossRefGoogle Scholar
  45. 45.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)CrossRefGoogle Scholar
  46. 46.
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1995)CrossRefGoogle Scholar
  47. 47.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)CrossRefGoogle Scholar
  48. 48.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)CrossRefGoogle Scholar
  49. 49.
    A.J. Leggett, Bose-Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307 (2001)CrossRefGoogle Scholar
  50. 50.
    I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)CrossRefGoogle Scholar
  51. 51.
    E.H. Lieb, R. Seiringer, J. Yngvason, Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)CrossRefGoogle Scholar
  52. 52.
    E.H. Lieb, R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)CrossRefGoogle Scholar
  53. 53.
    N.P. Proukakis, B. Jackson, Finite-temperature models of Bose-Einstein condensation. J. Phys. B 41, 203002 (2008)CrossRefGoogle Scholar
  54. 54.
    L. Cohen, C. Lee, Exact reduced density matrices for a model problem. J. Math. Phys. 26, 3105 (1985)MathSciNetCrossRefGoogle Scholar
  55. 55.
    J. Yan, Harmonic interaction model and its applications in Bose-Einstein condensation. J. Stat. Phys. 113, 623 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    M. Gajda, Criterion for Bose-Einstein condensation in a harmonic trap in the case with attractive interactions. Phys. Rev. A 73, 023603 (2006)CrossRefGoogle Scholar
  57. 57.
    O.E. Alon, Many-body excitation spectra of trapped bosons with general interaction by linear response. J. Phys.: Conf. Ser. 594, 012039 (2015)Google Scholar
  58. 58.
    C. Schilling, R. Schilling, Number-parity effect for confined fermions in one dimension. Phys. Rev. 93, 021601(R) (2016)Google Scholar
  59. 59.
    E. Fasshauer, A.U.J. Lode, Multiconfigurational time-dependent Hartree method for fermions: implementation, exactness, and few-fermion tunneling to open space. Phys. Rev. A 93, 033635 (2016)CrossRefGoogle Scholar
  60. 60.
    G.J. Milburn, J. Corney, E.M. Wright, D.F. Walls, Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys. Rev. A 55, 4318 (1997)CrossRefGoogle Scholar
  61. 61.
    A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates. Phys. Rev. Lett. 79, 4950 (1997)CrossRefGoogle Scholar
  62. 62.
    S. Raghavan, A. Smerzi, V.M. Kenkre, Transitions in coherent oscillations between two trapped Bose-Einstein condensates. Phys. Rev. A 60, R1787 (1999)CrossRefGoogle Scholar
  63. 63.
    C. Orzel, A.K. Tuchman, M.L. Fenselau, M. Yasuda, M.A. Kasevich, Squeezed states in a Bose-Einstein condensate. Science 291, 2386 (2001)CrossRefGoogle Scholar
  64. 64.
    A. Vardi, J.R. Anglin, Bose-Einstein condensates beyond mean field theory: quantum backreaction as decoherence. Phys. Rev. Lett. 86, 568 (2001)CrossRefGoogle Scholar
  65. 65.
    M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005)CrossRefGoogle Scholar
  66. 66.
    T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, P. Krüger, Matter-wave interferometry in a double well on an atom chip. Nat. Phys. 1, 57 (2005)CrossRefzbMATHGoogle Scholar
  67. 67.
    S. Levy, E. Lahoud, I. Shomroni, J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose–Einstein condensate. Nature (London) 449, 579 (2007)Google Scholar
  68. 68.
    M. Trujillo-Martinez, A. Posazhennikova, J. Kroha, Nonequilibrium Josephson oscillations in Bose-Einstein condensates without dissipation. Phys. Rev. Lett. 103, 105302 (2009)CrossRefGoogle Scholar
  69. 69.
    T. Zibold, E. Nicklas, C. Gross, M.K. Oberthaler, Classical bifurcation at the transition from Rabi to Josephson dynamics. Phys. Rev. Lett. 105, 204101 (2010)CrossRefGoogle Scholar
  70. 70.
    K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Universality of fragmentation in the Schrödinger dynamics of bosonic Josephson junctions. Phys. Rev. A 89, 023602 (2014)CrossRefGoogle Scholar
  71. 71.
    H. Veksler, S. Fishman, Semiclassical analysis of Bose-Hubbard dynamics. New J. Phys. 17, 053030 (2015)CrossRefGoogle Scholar
  72. 72.
    R.A. Doganov, S. Klaiman, O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Two trapped particles interacting by a finite-range two-body potential in two spatial dimensions. Phys. Rev. A 87, 033631 (2013)CrossRefGoogle Scholar
  73. 73.
    U.R. Fischer, A.U.J. Lode, B. Chatterjee, Condensate fragmentation as a sensitive measure of the quantum many-body behavior of bosons with long-range interactions. Phys. Rev. A 91, 063621 (2015)CrossRefGoogle Scholar
  74. 74.
    P. Bader, U.R. Fischer, Fragmented many-body ground states for scalar bosons in a single trap. Phys. Rev. Lett. 103, 060402 (2009)CrossRefGoogle Scholar
  75. 75.
    A.I. Streltsov, Quantum systems of ultracold bosons with customized interparticle interactions. Phys. Rev. A 88, 041602(R) (2013)Google Scholar
  76. 76.
    M.-K. Kang, U.R. Fischer, Revealing single-trap condensate fragmentation by measuring density-density correlations after time of flight. Phys. Rev. Lett. 113, 140404 (2014)CrossRefGoogle Scholar
  77. 77.
    O.I. Streltsova, O.E. Alon, L.S. Cederbaum, A.I. Streltsov, Generic regimes of quantum many-body dynamics of trapped bosonic systems with strong repulsive interactions. Phys. Rev. A 89, 061602(R) (2014)Google Scholar
  78. 78.
    U.R. Fischer, M.-K. Kang, “Photonic” cat states from strongly interacting matter waves. Phys. Rev. Lett. 115, 260404 (2015)CrossRefGoogle Scholar
  79. 79.
    J. Grond, J. Schmiedmayer, U. Hohenester, Optimizing number squeezing when splitting a mesoscopic condensate. Phys. Rev. A 79, 021603(R) (2009)Google Scholar
  80. 80.
    J. Grond, T. Betz, U. Hohenester, N.J. Mauser, J. Schmiedmayer, T. Schumm, The Shapiro effect in atomchip-based bosonic Josephson junctions. New J. Phys. 13, 065026 (2011)CrossRefGoogle Scholar
  81. 81.
    M. Heimsoth, D. Hochstuhl, C.E. Creffield, L.D. Carr, F. Sols, Effective Josephson dynamics in resonantly driven Bose-Einstein condensates. New J. Phys. 15, 103006 (2013)CrossRefGoogle Scholar
  82. 82.
    S.I. Mistakidis, L. Cao, P. Schmelcher, Negative-quench-induced excitation dynamics for ultracold bosons in one-dimensional lattices. Phys. Rev. A 91, 033611 (2015)CrossRefGoogle Scholar
  83. 83.
    S. Krönke, P. Schmelcher, Many-body processes in black and gray matter-wave solitons. Phys. Rev. A 91, 053614 (2015)CrossRefGoogle Scholar
  84. 84.
    S. Krönke, P. Schmelcher, Two-body correlations and natural-orbital tomography in ultracold bosonic systems of definite parity. Phys. Rev. A 92, 023631 (2015)CrossRefGoogle Scholar
  85. 85.
    S.I. Mistakidis, T. Wulf, A. Negretti, P. Schmelcher, Resonant quantum dynamics of few ultracold bosons in periodically driven finite lattices. J. Phys. B 48, 244004 (2015)CrossRefGoogle Scholar
  86. 86.
    I. Brouzos, A.I. Streltsov, A. Negretti, R.S. Said, T. Caneva, S. Montangero, T. Calarco, Quantum speed limit and optimal control of many-boson dynamics. Phys. Rev. A 92, 062110 (2015)CrossRefGoogle Scholar
  87. 87.
    S. Dutta, S. Basu, Condensate characteristics of bosons in a tilted optical lattice. J. Phys.: Conf. Ser. 759, 012036 (2016)Google Scholar
  88. 88.
    O.V. Marchukov, U.R. Fischer, Phase-fluctuating condensates are fragmented: an experimental benchmark for self-consistent quantum many-body calculations. arXiv:1701.06821v2 [cond-mat.quant-gas].Google Scholar
  89. 89.
    S. Bauch, K. Balzer, C. Henning, M. Bonitz, Quantum breathing mode of trapped bosons and fermions at arbitrary coupling. Phys. Rev. B 80, 054515 (2009)CrossRefGoogle Scholar
  90. 90.
    R. Schmitz, S. Krönke, L. Cao, P. Schmelcher, Quantum breathing dynamics of ultracold bosons in one-dimensional harmonic traps: unraveling the pathway from few- to many-body systems. Phys. Rev. A 88, 043601 (2013)CrossRefGoogle Scholar
  91. 91.
    J. Grond, A.I. Streltsov, A.U.J. Lode, K. Sakmann, L.S. Cederbaum, O.E. Alon, Excitation spectra of many-body systems by linear response: general theory and applications to trapped condensates. Phys. Rev. A 88, 023606 (2013)CrossRefGoogle Scholar
  92. 92.
    O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Unified view on linear response of interacting identical and distinguishable particles from multiconfigurational time-dependent Hartree methods. J. Chem. Phys. 140, 034108 (2014)CrossRefGoogle Scholar
  93. 93.
    P. Grech, R. Seiringer, The excitation spectrum for weakly-interacting bosons in a trap. Commun. Math. Phys. 322, 559 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    Y. Saad, Numerical Methods for Large Eigenvalue Problems (Halstead Press, New York, 1992)zbMATHGoogle Scholar
  95. 95.
    W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9, 17–29 (1951). https://doi.org/10.1090/qam/42792; http://www.ams.org/journals/qam/1951-09-01/S0033-569X-1951-42792-9/
  96. 96.
    X.-F. Zhang, M. Kato, W. Han, S.-G. Zhang, H. Saito, Spin-orbit-coupled Bose-Einstein condensates held under a toroidal trap. Phys. Rev. A 95, 033620 (2017)CrossRefGoogle Scholar
  97. 97.
    H. Wang, M. Thoss, Numerically exact quantum dynamics for indistinguishable particles: the multilayer multiconfiguration time-dependent Hartree theory in second quantization representation. J. Chem. Phys. 131, 024114 (2009)CrossRefGoogle Scholar
  98. 98.
    S. Krönke, L. Cao, O. Vendrell, P. Schmelcher, Non-equilibrium quantum dynamics of ultra-cold atomic mixtures: the multi-layer multi-configuration time-dependent Hartree method for bosons. New J. Phys. 15, 063018 (2013)MathSciNetCrossRefGoogle Scholar
  99. 99.
    L. Cao, S. Krönke, O. Vendrell, P. Schmelcher, The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications. J. Chem. Phys. 139, 134103 (2013)CrossRefGoogle Scholar
  100. 100.
    U. Manthe, T. Weike, On the multi-layer multi-configurational time-dependent Hartree approach for bosons and fermions. J. Chem. Phys. 146, 064117 (2017)CrossRefGoogle Scholar
  101. 101.
    L. Cao, V. Bolsinger, S.I. Mistakidis, G.M. Koutentakis, S. Krönke, J.M. Schurer, P. Schmelcher, A unified ab initio approach to the correlated quantum dynamics of ultracold fermionic and bosonic mixtures. J. Chem. Phys. 147, 044106 (2017).CrossRefGoogle Scholar
  102. 102.
    C. Lévêque, L.B. Madsen, Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems. New J. Phys. 19, 043007 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ofir E. Alon
    • 1
    • 2
  • Raphael Beinke
    • 3
  • Christoph Bruder
    • 4
  • Lorenz S. Cederbaum
    • 3
  • Shachar Klaiman
    • 3
  • Axel U. J. Lode
    • 4
    • 5
    • 6
  • Kaspar Sakmann
    • 6
  • Marcus Theisen
    • 3
  • Marios C. Tsatsos
    • 7
  • Storm E. Weiner
    • 8
  • Alexej I. Streltsov
    • 3
    • 9
    Email author
  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael
  2. 2.Haifa Research Center for Theoretical Physics and AstrophysicsUniversity of HaifaHaifaIsrael
  3. 3.Theoretische Chemie, Physikalisch-Chemisches InstitutUniversität HeidelbergHeidelbergGermany
  4. 4.Department of PhysicsUniversity of BaselBaselSwitzerland
  5. 5.Wolfgang Pauli Institute, c/o Faculty of MathematicsUniversity of ViennaViennaAustria
  6. 6.Vienna Center for Quantum Science and TechnologyAtominstitut TU WienViennaAustria
  7. 7.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil
  8. 8.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  9. 9.Institut für PhysikUniversität KasselKasselGermany

Personalised recommendations