Abstract
Liquid jet break-up appears in many technical applications, as well as in nature. It consists of complex physical processes, which happen on very small scales in space and time. This makes them hard to capture by experimental methods; and therefore a prime subject for numerical investigations. The state-of-the-art approach combines the Volume of Fluid (VOF) method with Direct Numerical Simulations (DNS) as employed in the ITLR in-house code Free Surface 3D (FS3D). The simulation of these jets is dependent on very fine grids, with most of the computational costs incurred by solving the Pressure Poisson Equation. In order to simulate larger computational domains, we tried to improve the performance of FS3D by the implementation of a new multigrid solver. For this we selected the solver contained in the UG4 package developed by the Goethe Center for Scientific Computing at the University of Frankfurt. We will show simulations of the primary break-up of shear-thinning liquid jets and explain why larger computational domains are necessary. Results are preliminary. We demonstrate that the implementation of UG4 into FS3D provides a noticeable increase in weak scaling performance, while the change in strong scaling is yet detrimental. We will then discuss ways to further improve these results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
P. Beau, M. Funk, R. Lebas, F. Demoulin, Cavitation applying quasi-multiphase model to simulate atomization in diesel engines. SAE Technical Papers 01-0220 (2005)
J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface-tension. J. Comput. Phys. 100(2), 335–354 (1992)
K. Eisenschmidt, M. Ertl, H. Gomaa, C. Kieffer-Roth, C. Meister, P. Rauschenberger, M. Reitzle, K. Schlottke, B. Weigand, Direct numerical simulations for multiphase flows: an overview of the multiphase code FS3D. J. Appl. Math. Comput. 272(2), 508–517 (2016) https://doi.org/10.1016/j.amc.2015.05.095
M. Ertl, B. Weigand, Investigation of the influence of atmospheric pressure on the jet breakup of a shear thinning liquid with DNS, in ILASS 2014, Bremen (2014)
M. Ertl, B. Weigand, Analysis methods for direct numerical simulations of primary breakup of shear-thinning liquid jets. Atomization Sprays 27(4), 303–317 (2017)
M. Ertl, N. Roth, G. Brenn, H. Gomaa, B. Weigand, Simulations and experiments on shape oscillations of newtonian and non-Newtonian liquid droplets, in ILASS 2013 (2013), p. 7
M. Ertl, G. Karch, F. Sadlo, T. Ertl, B. Weigand, Investigation and visual analysis of direct simulations of quasi-steady primary break-up of shear thinning liquids, in Proceedings 9th International Conference on Multiphase Flow: ICMF 2016, Firenze (2016)
U. Fritsching, Process-Spray: Functional Particles Produced in Spray Processes (Springer, Cham, 2016)
C. Galbiati, M. Ertl, S. Tonini, G.E. Cossali, B. Weigand, DNS investigation of the primary breakup in a conical swirled jet, in High Performance Computing in Science and Engineering’15 Transactions of the High Performance Computing Center, Stuttgart (HLRS) (Springer, Cham, 2016), pp. 333–347
H. Gomaa, I. Stotz, M. Sievers, G. Lamanna, B. Weigand, Preliminary investigation on diesel droplet impact on oil wallfilms in diesel engines, in ILASS – Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, September 2011
F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)
J. Hernández, J. López, P. Gómez, C. Zanzi, F. Faura, A new volume of fluid method in three dimensions—part I: multidimensional advection method with face-matched flux polyhedra. Int. J. Numer. Methods Fluids 58(8), 897–921 (2008). https://doi.org/https://doi.org/10.1002/fld.1776
M. Herrmann, A dual-scale les subgrid model for turbulent liquid/gas phase interface dynamics, in 13th Triennial International Conference on Liquid Atomization and Spray Systems ICLASS 2015, Tainan, August 23–27 (2015)
C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5
M. Klein, Direct numerical simulation of a spatially developing water sheet at moderate Reynolds number. Int. J. Heat Fluid Flow 26, 722–731 (2005)
B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113(1), 134–147 (1994)
A. Lakdawala, R. Thaokar, A. Sharma, Break-up of a non-newtonian jet injected downwards in a newtonian liquid. Sadhana Indian Acad. Sci. 40, 819–833 (2015)
A.H. Lefebvre, Atomization and Sprays (Hemisphere, New York, 1989)
H. Li-Ping, Z. Meng-Zheng, D. Qing, L. Ning, X. Zhen-Yan, Large eddy simulation of atomization process of non-newtonian liquid jet. Adv. Sci. Lett. 8, 285–290 (2012)
S.P. Lin, R.D. Reitz, Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85–105 (1998)
C.D. Munz, T. Westermann, Numerische Behandlung gewöhnlicher und partieller Differenzialgleichungen (Springer, Berlin, 2006). ISBN 978-3-540-29867-3
Y. Pan, H. Suga, A numerical study on the breakup process of laminar liquid jets into a gas. Phys. Fluids 18, 052101 (2006)
S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009). https://doi.org/10.1016/j.jcp.2009.04.042
P. Rauschenberger, B. Weigand, Direct numerical simulation of rigid bodies in multiphase flow within an Eulerian framework. J. Comput. Phys. 291, 238–253 (2015). https://doi.org/10.1016/j.jcp.2015.03.023
P. Rauschenberger, J. Schlottke, K. Eisenschmidt, B. Weigand, Direct numerical simulation of multiphase flow with rigid body motion in an Eulerian framework, in ILASS - Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril (2011)
P. Rauschenberger, J. Schlottke, B. Weigand, A computation technique for rigid particle flows in an Eulerian framework using the multiphase DNS code FS3D, in High Performance Computing in Science and Engineering’11 Transactions of the High Performance Computing Center, Stuttgart (HLRS) (2011). https://doi.org/10.1007/978-3-642-23869-7_23
S. Reiter, A. Vogel, I. Heppner, M. Rupp, G. Wittum, A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2013). https://doi.org/10.1007/s00791-014-0231-x
M. Reitzle, C. Kieffer-Roth, H. Garcke, B. Weigand, A volume-of-fluid method for three-dimensional hexagonal solidification processes. J. Comput. Phys. 339, 356–369 (2017). https://doi.org/10.1016/j.jcp.2017.03.001
W.J. Rider, D.B. Kothe, Reconstructing volume tracking. J. Comput. Phys. 141(2), 112–152 (1998). https://doi.org/https://doi.org/10.1006/jcph.1998.5906
M. Rieber, Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen. Dissertation, Universität Stuttgart, 2004
M. Rieber, F. Graf, M. Hase, N. Roth, B. Weigand, Numerical simulation of moving spherical and strongly deformed droplets, in Proceedings ILASS-Europe (2000), pp. 1–6
N. Roth, J. Schlottke, J. Urban, B. Weigand, Simulations of droplet impact on cold wall without wetting, in ILASS (2008), pp. 1–7
N. Roth, H. Gomaa, B. Weigand, Droplet collisions at high weber numbers: experiments and numerical simulations, in Proceedings of DIPSI Workshop 2010 on Droplet Impact Phenomena & Spray Investigation, Bergamo (2010)
W. Sander, B. Weigand, Direct numerical simulation of primary breakup phenomena in liquid sheets, in High-Performance Computing in Science and Engineering 2006: Transactions of the High Performance Computing Center Stuttgart (HLRS) (Springer, Berlin, 2006), pp. 223–236
J. Shinjo, A. Umemura, Surface instability and primary atomization characteristics of straight liquid jet sprays. Int. J. Multiphase Flow 37, 1294–1304 (2011)
G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)
R.I. Tanner, Engineering Rheology. Oxford Engineering Science Series, 2nd edn. (Oxford University Press, Oxford, 2002)
A. Vogel, S. Reiter, M. Rupp, A. Nägel, G. Wittum, UG4: a novel flexible software system for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16(4), 165–179 (2013). https://doi.org/10.1007/s00791-014-0232-9
A. Vogel, A. Calotoiu, A. Strubem, S. Reiter, A. Nägel, F. Wolf, G. Wittum, 10,000 performance models per minute – scalability of the UG4 simulation framework, in Euro-Par 2015, ed. by J. Träff, S. Hunold, F. Versaci, vol. 9233 (2015), pp. 519–531. https://doi.org/10.1007/978-3-662-48096-0
A. Vogel, A. Calotoiu, A. Nägel, S. Reiter, A. Strube, G. Wittum, F. Wolf, Automated performance modeling of the UG4 simulation framework, in Software for Exascale Computing - SPPEXA 2013–2015, ed. by H. Bungartz, P. Neumann, W.E. Nagel. Lecture Notes in Computational Science and Engineering, vol. 113 (Springer, Cham, 2016), pp. 467–481. https://doi.org/10.1007/978-3-319-40528-5_21
H. Weking, J. Schlottke, M. Boger, C.D. Munz, B. Weigand, DNS of rising bubbles using VOF and balanced force surface tension, in High Performance Computing on Vector Systems (Springer, Berlin, 2010)
C. Zhu, M. Ertl, B. Weigand, Effect of Reynolds number on the primary jet breakup of inelastic non-newtonian fluids from a duplex nozzle using direct numerical simulation (DNS), in ILASS 2013 (2013)
Acknowledgements
The authors kindly acknowledge the High Performance Computing Center Stuttgart (HLRS) for support and supply of computational time on the Cray XC40 platform under the Grant No. FS3D/11142 and the financial support by the Deutsche Forschungsgemeinschaft (DFG) for the Collaborative Research Center SFB-TRR75.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Ertl, M., Reutzsch, J., Nägel, A., Wittum, G., Weigand, B. (2018). Towards the Implementation of a New Multigrid Solver in the DNS Code FS3D for Simulations of Shear-Thinning Jet Break-Up at Higher Reynolds Numbers. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 17 . Springer, Cham. https://doi.org/10.1007/978-3-319-68394-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-68394-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68393-5
Online ISBN: 978-3-319-68394-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)