Advertisement

Blood Proteins and Their Interactions with Nanoparticles Investigated Using Molecular Dynamics Simulations

  • Timo Schäfer
  • Jiajia Zhou
  • Friederike Schmid
  • Giovanni SettanniEmail author
Conference paper

Abstract

Blood proteins play a fundamental role in determining the response of the organism to the injection of drugs or, more in general, of therapeutic preparations in the blood stream. Some of these proteins are responsible for mediating immune response and coagulation. Nanoparticles, which are being intensely investigated as possible drug nanocarriers, heavily interact with blood proteins and their ultimate fate is determined by these interactions. Here we report the results of molecular dynamics simulations of several blood proteins aimed to determining their possible behavior at the nanoparticle surface. On one hand we investigated the behavior of fibrinogen, a glycoprotein, which polymerizes into fibrin during coagulation. On the other hand we investigated the behavior of several blood proteins in the presence of the polymer poly (ethylene-glycol), often used as nanoparticle coating to reduce unspecific interactions with the surrounding environment.

Notes

Acknowledgements

TS gratefully acknowledges financial support from the Graduate School Materials Science in Mainz. GS gratefully acknowledges financial support from the Max-Planck Graduate Center with the University of Mainz. We gratefully acknowledge support with computing time from the HPC facility Hazelhen at the High performance computing center Stuttgart and the HPC facility Mogon at the university of Mainz. This work was supported by the German Science Foundation within SFB 1066 project Q1.

References

  1. 1.
    S. Köhler, F. Schmid, G. Settanni, PLoS Comput. Biol. 11(9), 1 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Köhler, F. Schmid, G. Settanni, Langmuir 31(48), 13180 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Kollman, L. Pandi, M. Sawaya, M. Riley, R. Doolittle, Biochem 48(18), 3877 (2009)CrossRefGoogle Scholar
  4. 4.
    G. Marguerie, E. Plow, T. Edgington, J. Biol. Chem. 254(12), 5357 (1979)Google Scholar
  5. 5.
    A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 99(20), 12562 (2002)CrossRefGoogle Scholar
  6. 6.
    A.E. García, Phys. Rev. Lett. 68, 2696 (1992)CrossRefGoogle Scholar
  7. 7.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79(2), 926 (1983)CrossRefGoogle Scholar
  8. 8.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)CrossRefGoogle Scholar
  9. 9.
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4(3), 435 (2008)CrossRefGoogle Scholar
  10. 10.
    G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126(1), 014101 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Parrinello, A. Rahman, J. Appl. Phys. 52(12), 7182 (1981)CrossRefGoogle Scholar
  12. 12.
    R.B. Best, X. Zhu, J. Shim, P.E.M. Lopes, J. Mittal, M. Feig, A.D. Mackerell Jr., J. Chem. Theory Comput. 8(9), 3257 (2012)CrossRefGoogle Scholar
  13. 13.
    M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1–2, 19 (2015)CrossRefGoogle Scholar
  14. 14.
    G.A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi, Comput. Phys. Commun. 185(2), 604 (2014)CrossRefGoogle Scholar
  15. 15.
    M.J. Ferrarotti, S. Bottaro, A. Párez-Villa, G. Bussi, J. Chem. Theory Comput. 11(1), 139 (2015)CrossRefGoogle Scholar
  16. 16.
    R.F. Doolittle, D.M. Goldbaum, L.R. Doolittle, J. Mol. Biol. 120(2), 311 (1978)CrossRefGoogle Scholar
  17. 17.
    S. Schöttler, G. Becker, S. Winzen, T. Steinbach, K. Mohr, K. Landfester, V. Mailänder, F.R. Wurm, Nat. Nanotechnol. 11, 372–377 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Heinz, H. Ramezani-Dakhel, Chem. Soc. Rev. 45(2), 412 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Ozboyaci, D.B. Kokh, S. Corni, R.C. Wade, Q. Rev. Biophys. 49, e4 (2016)Google Scholar
  20. 20.
    G. Settanni, J. Zhou, T. Suo, S. Schöttler, K. Landfester, F. Schmid, V. Mailänder, Nanoscale 9(6), 2138 (2017)CrossRefGoogle Scholar
  21. 21.
    Q. Shao, Y. He, A.D. White, S. Jiang, J. Chem. Phys. 136(22), 225101 (2012)CrossRefGoogle Scholar
  22. 22.
    N. Basse, J.L. Kaar, G. Settanni, A.C. Joerger, T.J. Rutherford, A.R. Fersht, Chem. Biol. 17(1), 46 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Seco, F.J. Luque, X. Barril, J. Med. Chem. 52(8), 2363 (2009)CrossRefGoogle Scholar
  24. 24.
    G. Settanni, J. Zhou, F. Schmid, CSP2017 (accepted)Google Scholar
  25. 25.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)CrossRefGoogle Scholar
  26. 26.
    A.D. Mackerell, M. Feig, C.L. Brooks, J. Comput. Chem. 25(11), 1400 (2004)CrossRefGoogle Scholar
  27. 27.
    H. Lee, R.M. Venable, A.D. Mackerell, R.W. Pastor, Biophys. J. 95(4), 1590 (2008)CrossRefGoogle Scholar
  28. 28.
    G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101(5), 4177 (1994)CrossRefGoogle Scholar
  29. 29.
    S.E. Feller, Y. Zhang, R.W. Pastor, B.R. Brooks, J. Chem. Phys. 103(11), 4613 (1995)CrossRefGoogle Scholar
  30. 30.
    U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103(19), 8577 (1995)CrossRefGoogle Scholar
  31. 31.
    J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 19(6), 774 (1951)MathSciNetCrossRefGoogle Scholar
  32. 32.
    J.C. Lee, S.N. Timasheff, J. Biol. Chem. 256(14), 7193 (1981)Google Scholar
  33. 33.
    N. Poklar, N. Petrovčič, M. Oblak, G. Vesnaver, Protein. Sci. 8(4), 832 (1999)CrossRefGoogle Scholar
  34. 34.
    E.S. Courtenay, M.W. Capp, C.F. Anderson, M.T. Record, Biochemistry 39(15), 4455 (2000)CrossRefGoogle Scholar
  35. 35.
    B.M. Baynes, B.L. Trout, J. Phys. Chem. B 107(50), 14058 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Timo Schäfer
    • 1
  • Jiajia Zhou
    • 2
  • Friederike Schmid
    • 1
  • Giovanni Settanni
    • 1
    Email author
  1. 1.Institut für PhysikJohannes Gutenberg UniversityMainzGermany
  2. 2.Institute of PhysicsJohannes-Gutenberg UniversityMainzGermany

Personalised recommendations