Skip to main content

Blood Proteins and Their Interactions with Nanoparticles Investigated Using Molecular Dynamics Simulations

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 17

Abstract

Blood proteins play a fundamental role in determining the response of the organism to the injection of drugs or, more in general, of therapeutic preparations in the blood stream. Some of these proteins are responsible for mediating immune response and coagulation. Nanoparticles, which are being intensely investigated as possible drug nanocarriers, heavily interact with blood proteins and their ultimate fate is determined by these interactions. Here we report the results of molecular dynamics simulations of several blood proteins aimed to determining their possible behavior at the nanoparticle surface. On one hand we investigated the behavior of fibrinogen, a glycoprotein, which polymerizes into fibrin during coagulation. On the other hand we investigated the behavior of several blood proteins in the presence of the polymer poly (ethylene-glycol), often used as nanoparticle coating to reduce unspecific interactions with the surrounding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Köhler, F. Schmid, G. Settanni, PLoS Comput. Biol. 11(9), 1 (2015)

    Article  Google Scholar 

  2. S. Köhler, F. Schmid, G. Settanni, Langmuir 31(48), 13180 (2015)

    Article  Google Scholar 

  3. J. Kollman, L. Pandi, M. Sawaya, M. Riley, R. Doolittle, Biochem 48(18), 3877 (2009)

    Article  Google Scholar 

  4. G. Marguerie, E. Plow, T. Edgington, J. Biol. Chem. 254(12), 5357 (1979)

    Google Scholar 

  5. A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 99(20), 12562 (2002)

    Article  Google Scholar 

  6. A.E. García, Phys. Rev. Lett. 68, 2696 (1992)

    Article  Google Scholar 

  7. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79(2), 926 (1983)

    Article  Google Scholar 

  8. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

  9. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4(3), 435 (2008)

    Article  Google Scholar 

  10. G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126(1), 014101 (2007)

    Article  Google Scholar 

  11. M. Parrinello, A. Rahman, J. Appl. Phys. 52(12), 7182 (1981)

    Article  Google Scholar 

  12. R.B. Best, X. Zhu, J. Shim, P.E.M. Lopes, J. Mittal, M. Feig, A.D. Mackerell Jr., J. Chem. Theory Comput. 8(9), 3257 (2012)

    Article  Google Scholar 

  13. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1–2, 19 (2015)

    Article  Google Scholar 

  14. G.A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi, Comput. Phys. Commun. 185(2), 604 (2014)

    Article  Google Scholar 

  15. M.J. Ferrarotti, S. Bottaro, A. Párez-Villa, G. Bussi, J. Chem. Theory Comput. 11(1), 139 (2015)

    Article  Google Scholar 

  16. R.F. Doolittle, D.M. Goldbaum, L.R. Doolittle, J. Mol. Biol. 120(2), 311 (1978)

    Article  Google Scholar 

  17. S. Schöttler, G. Becker, S. Winzen, T. Steinbach, K. Mohr, K. Landfester, V. Mailänder, F.R. Wurm, Nat. Nanotechnol. 11, 372–377 (2016)

    Article  Google Scholar 

  18. H. Heinz, H. Ramezani-Dakhel, Chem. Soc. Rev. 45(2), 412 (2016)

    Article  Google Scholar 

  19. M. Ozboyaci, D.B. Kokh, S. Corni, R.C. Wade, Q. Rev. Biophys. 49, e4 (2016)

    Google Scholar 

  20. G. Settanni, J. Zhou, T. Suo, S. Schöttler, K. Landfester, F. Schmid, V. Mailänder, Nanoscale 9(6), 2138 (2017)

    Article  Google Scholar 

  21. Q. Shao, Y. He, A.D. White, S. Jiang, J. Chem. Phys. 136(22), 225101 (2012)

    Article  Google Scholar 

  22. N. Basse, J.L. Kaar, G. Settanni, A.C. Joerger, T.J. Rutherford, A.R. Fersht, Chem. Biol. 17(1), 46 (2010)

    Article  Google Scholar 

  23. J. Seco, F.J. Luque, X. Barril, J. Med. Chem. 52(8), 2363 (2009)

    Article  Google Scholar 

  24. G. Settanni, J. Zhou, F. Schmid, CSP2017 (accepted)

    Google Scholar 

  25. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)

    Article  Google Scholar 

  26. A.D. Mackerell, M. Feig, C.L. Brooks, J. Comput. Chem. 25(11), 1400 (2004)

    Article  Google Scholar 

  27. H. Lee, R.M. Venable, A.D. Mackerell, R.W. Pastor, Biophys. J. 95(4), 1590 (2008)

    Article  Google Scholar 

  28. G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101(5), 4177 (1994)

    Article  Google Scholar 

  29. S.E. Feller, Y. Zhang, R.W. Pastor, B.R. Brooks, J. Chem. Phys. 103(11), 4613 (1995)

    Article  Google Scholar 

  30. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103(19), 8577 (1995)

    Article  Google Scholar 

  31. J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 19(6), 774 (1951)

    Article  MathSciNet  Google Scholar 

  32. J.C. Lee, S.N. Timasheff, J. Biol. Chem. 256(14), 7193 (1981)

    Google Scholar 

  33. N. Poklar, N. Petrovčič, M. Oblak, G. Vesnaver, Protein. Sci. 8(4), 832 (1999)

    Article  Google Scholar 

  34. E.S. Courtenay, M.W. Capp, C.F. Anderson, M.T. Record, Biochemistry 39(15), 4455 (2000)

    Article  Google Scholar 

  35. B.M. Baynes, B.L. Trout, J. Phys. Chem. B 107(50), 14058 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

TS gratefully acknowledges financial support from the Graduate School Materials Science in Mainz. GS gratefully acknowledges financial support from the Max-Planck Graduate Center with the University of Mainz. We gratefully acknowledge support with computing time from the HPC facility Hazelhen at the High performance computing center Stuttgart and the HPC facility Mogon at the university of Mainz. This work was supported by the German Science Foundation within SFB 1066 project Q1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Settanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schäfer, T., Zhou, J., Schmid, F., Settanni, G. (2018). Blood Proteins and Their Interactions with Nanoparticles Investigated Using Molecular Dynamics Simulations. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 17 . Springer, Cham. https://doi.org/10.1007/978-3-319-68394-2_1

Download citation

Publish with us

Policies and ethics