Skip to main content

An Adaptive Soft Set Based Diagnostic Risk Prediction System

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 683)

Abstract

Recently, risk based prediction models in medical diagnostic systems gain wider significance in deciding most appropriate diagnostic treatments and for clinical usage. Prostate cancer is a disease which is difficult to diagnose and there are number of failure cases reported. Therefore, an effective and aggressive selection of multiple factors influence on the disease is required. In this paper, an adaptive soft set based diagnostic risk prediction system is presented with the implementation on prostate cancer. The system receives input parameters related to the disease and gives out the risk percentage of the patient. Soft sets are generated with the input parameters by fuzzification followed by rule generation. The risk percentage of the rules are individually calculated for Precision, Recall and F-Measure, that conclude on the best risk percentage based on the maximum area under the curve (AUC) in each case. This ensures to select the most influential risk parameters in treating the disease. Specificity and sensitivity of the test system yield 75.00% and 45.45% respectively.

Keywords

  • Soft sets
  • Fuzzy set
  • Prostate cancer
  • Decision making

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Alcantud, J.C.R., de Andres Calle, R., Torrecillas, M.J.M.: Hesitant fuzzy worth: an innovative ranking methodology for hesitant fuzzy subsets. Appl. Soft Comput. 38, 232–243 (2016)

    CrossRef  Google Scholar 

  2. Alcantud, J.C.R., Santos-García, G., Hernández-Galilea, E.: Glaucoma diagnosis: a soft set based decision making procedure. In: Conference of the Spanish Association for Artificial Intelligence, pp. 49–60. Springer (2015)

    Google Scholar 

  3. Ali, M.: A note on soft sets, rough soft sets and fuzzy soft sets. Appl. Soft Comput. 11, 3329–3332 (2011)

    CrossRef  Google Scholar 

  4. Ali, M.I., Feng, F., Liu, X., Min, W.K., Shabir, M.: On some new operations in soft set theory. Comput. Math. Appl. 57(9), 1547–1553 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    CrossRef  MATH  Google Scholar 

  6. Benecchi, L.: Neuro-fuzzy system for prostate cancer diagnosis. Urology 68(2), 357–361 (2006)

    CrossRef  Google Scholar 

  7. Catalona, W.J., Partin, A.W., Slawin, K.M., Brawer, M.K., Flanigan, R.C., Patel, A., Richie, J.P., Walsh, P.C., Scardino, P.T., Lange, P.H., et al.: Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. Jama 279(19), 1542–1547 (1998)

    CrossRef  Google Scholar 

  8. Çağman, N., Enginoğlu, S.: Soft set theory and uni-int decision making. Eur. J. Oper. Res. 207(2), 848–855 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Çelik, Y., Yamak, S.: Fuzzy soft set theory applied to medical diagnosis using fuzzy arithmetic operations. J. Inequalities Appl. 2013(1), 82 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Cohn, T.E.: Receiver operating characteristic analysis of photoreceptor sensitivity. IEEE Trans. Syst. Man Cybern. 5, 873–881 (1983)

    CrossRef  Google Scholar 

  11. Das, A.K.: Weighted fuzzy soft multiset and decision-making. Int. J. Mach. Learn. Cybern. 1–8 (2016). Springer

    Google Scholar 

  12. De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 117(2), 209–213 (2001)

    CrossRef  MATH  Google Scholar 

  13. D’Errico, G.E.: Receiver operating characteristic: a tool for cell confluence estimation. In: 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 576–579. IEEE (2015)

    Google Scholar 

  14. Eriksson, M., Reichardt, P., Hall, K.S., Schütte, J., Cameron, S., Hohenberger, P., Bauer, S., Leinonen, M., Reichardt, A., Davis, M.R., et al.: Needle biopsy through the abdominal wall for the diagnosis of gastrointestinal stromal tumour-does it increase the risk for tumour cell seeding and recurrence? Eur. J. Cancer 59, 128–133 (2016)

    CrossRef  Google Scholar 

  15. Fatimah, F., Rosadi, D., Hakim, R.F., Alcantud, J.C.R.: Probabilistic soft sets and dual probabilistic soft sets in decision-making. In: Neural Computing and Applications, pp. 1–11 (2017)

    Google Scholar 

  16. Feng, F.: Soft rough sets applied to multicriteria group decision making. Ann. Fuzzy Math. Inform. 2(1), 69–80 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Feng, F., Li, C., Davvaz, B., Ali, M.: Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Comput. 14(9), 899–911 (2010)

    CrossRef  MATH  Google Scholar 

  18. Feng, F., Li, Y.: Soft subsets and soft product operations. Inf. Sci. 232, 44–57 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Feng, F., Liu, X., Leoreanu-Fotea, V., Jun, Y.B.: Soft sets and soft rough sets. Inf. Sci. 181(6), 1125–1137 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  20. Huang, J., Ling, C.X.: Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)

    CrossRef  Google Scholar 

  21. Keles, A., Hasiloglu, A.S., Keles, A., Aksoy, Y.: Neuro-fuzzy classification of prostate cancer using NEFCLASS-J. Comput. Biol. Med. 37(11), 1617–1628 (2007)

    CrossRef  Google Scholar 

  22. Ma, X., Liu, Q., Zhan, J.: A survey of decision making methods based on certain hybrid soft set models. Artif. Intell. Rev. 47(4), 507–530 (2017)

    CrossRef  Google Scholar 

  23. Maji, P., Biswas, R., Roy, A.: Fuzzy soft sets. J. Fuzzy Math. 9, 589–602 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Maji, P., Biswas, R., Roy, A.: Soft set theory. Comput. Math. Appl. 45, 555–562 (2003)

    MathSciNet  CrossRef  MATH  Google Scholar 

  25. Miller, R.A., Pople Jr., H.E., Myers, J.D.: Internist-I, an experimental computer-based diagnostic consultant for general internal medicine. New Engl. J. Med. 307(8), 468–476 (1982)

    CrossRef  Google Scholar 

  26. Molodtsov, D.: Soft set theory - first results. Comput. Math. Appl. 37, 19–31 (1999)

    MathSciNet  CrossRef  MATH  Google Scholar 

  27. Oniśko, A., Druzdzel, M.J.: Impact of precision of bayesian network parameters on accuracy of medical diagnostic systems. Artif. Intell. Med. 57(3), 197–206 (2013)

    CrossRef  Google Scholar 

  28. Park, K.S., Chae, Y.M., Park, M.: Developing a knowledge-based system to automate the diagnosis of allergic rhinitis. Biomed. Fuzzy Hum. Sci. Official J. Biomed. Fuzzy Syst. Assoc. 2(1), 9–18 (1996)

    Google Scholar 

  29. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    CrossRef  MATH  Google Scholar 

  30. Peng, X., Yang, Y.: Algorithms for interval-valued fuzzy soft sets in stochastic multi-criteria decision making based on regret theory and prospect theory with combined weight. Appl. Soft Comput. 54, 415–430 (2017)

    CrossRef  Google Scholar 

  31. Sanchez, E.: Inverses of fuzzy relations. Application to possibility distributions and medical diagnosis. Fuzzy Sets Syst. 2(1), 75–86 (1979)

    MathSciNet  CrossRef  MATH  Google Scholar 

  32. Saritas, I., Allahverdi, N., Sert, I.U.: A fuzzy approach for determination of prostate cancer. Int. J. Intell. Syst. Appl. Eng. 1(1), 1–7 (2013)

    Google Scholar 

  33. Shortliffe, E.: Computer-Based Medical Consultations: MYCIN, vol. 2. Elsevier, New York (2012)

    Google Scholar 

  34. Slowinski, K.: Rough classification of HSV patients. In: Intelligent Decision Support-Handbook of Applications and Advances of the Rough Sets Theory, pp. 77–94 (1992)

    Google Scholar 

  35. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)

    MATH  Google Scholar 

  36. Yuksel, S., Dizman, T., Yildizdan, G., Sert, U.: Application of soft sets to diagnose the prostate cancer risk. J. Inequalities Appl. 2013(1), 229 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  37. Yüksel, Ş., Tozlu, N., Dizman, T.H.: An application of multicriteria group decision making by soft covering based rough sets. Filomat 29(1), 209–219 (2015)

    MathSciNet  CrossRef  MATH  Google Scholar 

  38. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    CrossRef  MATH  Google Scholar 

  39. Zhan, J., Liu, Q., Herawan, T.: A novel soft rough set: soft rough hemirings and corresponding multicriteria group decision making. Appl. Soft Comput. 54, 393–402 (2017)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Jacob Mathew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Mathew, T.J., Sherly, E., Alcantud, J.C.R. (2018). An Adaptive Soft Set Based Diagnostic Risk Prediction System. In: Thampi, S., Mitra, S., Mukhopadhyay, J., Li, KC., James, A., Berretti, S. (eds) Intelligent Systems Technologies and Applications. ISTA 2017. Advances in Intelligent Systems and Computing, vol 683. Springer, Cham. https://doi.org/10.1007/978-3-319-68385-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68385-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68384-3

  • Online ISBN: 978-3-319-68385-0

  • eBook Packages: EngineeringEngineering (R0)