Skip to main content

Basic Hypergeometric Summations from Rook Theory

  • Conference paper
  • First Online:
Analytic Number Theory, Modular Forms and q-Hypergeometric Series (ALLADI60 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 221))

Included in the following conference series:

Abstract

We employ a one-variable extension of q-rook theory to give combinatorial proofs of some basic hypergeometric summations, including the q-Pfaff–Saalschütz summation and a \({}_4\phi _3\) summation by Jain.

This paper is dedicated to Krishna Alladi on the occasion of his 60th birthday

Partially supported by FWF Austrian Science Fund grant F50-08, and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (SRC-AORC) (No. 2016R1A5A1008055).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Andrews, Partitions, in Combinatorics: Ancient and Modern, ed. by R. Wilson, et al. (Oxford University Press, Oxford, 2013), pp. 205–229

    Google Scholar 

  2. G.E. Andrews, D.M. Bressoud, Identities in combinatorics III: further aspects of ordered set sorting. Discret. Math. 49, 223–236 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. W.N. Bailey, On the sum of a terminating \({}_3F_2(1)\). Q. J. Math. Oxf. Ser. 4(2), 237–240 (1953)

    Google Scholar 

  4. F. Butler, M. Can, J. Haglund, J.B. Remmel, Rook theory notes, book project, http://www.math.ucsd.edu/~remmel/files/Book.pdf

  5. G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd edn., Encyclopedia of Mathematics and Its Applications (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  6. J. Goldman, J. Haglund, Generalized rook polynomials. J. Comb. Theory Ser. A 91, 509–530 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.R. Goldman, J.T. Joichi, D.E. White, Rook theory. IV. Orthogonal sequences of rook polynomials. Stud. Appl. Math. 56, 267–272 (1976/1977)

    Google Scholar 

  8. I.P. Goulden, A bijective proof of the \(q\)-Saalschütz theorem. Discret. Math. 57, 39–44 (1985)

    Google Scholar 

  9. V.W. Guo, J. Zeng, A combinatorial proof of a symmetric \(q\)-Pfaff–Saalschütz identity. Electron. J. Comb. 12, #N2 (2005)

    Google Scholar 

  10. J. Haglund, Rook theory and hypergeometric series. Adv. Appl. Math. 17, 408–459 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Haglund, J.B. Remmel, Rook theory for perfect matchings. Adv. Appl. Math. 27, 438–481 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. V.K. Jain, Some transformations of basic hypergeometric functions, II. SIAM J. Math. Anal. 12, 957–961 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Kaplansky, J. Riordan, The problem of the rooks and its applications. Duke Math. J. 13, 259–268 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Mansour, M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers (Chapman and Hall/CRC Press, Boca Raton, 2015)

    Book  MATH  Google Scholar 

  15. G. Nyul, G. Rácz, The \(r\)-Lah numbers. Discret. M. 338, 1660–1666 (2015)

    Google Scholar 

  16. M.J. Schlosser, Elliptic enumeration of nonintersecting lattice paths. J. Comb. Theory Ser. A 114, 505–521 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.J. Schlosser, A noncommutative weight-dependent generalization of the binomial theorem, arxiv.org/abs/1106.2112

  18. M.J. Schlosser, M. Yoo, Elliptic rook and file numbers. Electron. J. Comb. 24(1), P1.31 (2017)

    Google Scholar 

  19. M.J. Schlosser, M. Yoo, An elliptic extension of the general product formula for augmented rook boards. Eur. J. Comb. 58, 247–266 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. M.J. Schlosser, M. Yoo, Elliptic extensions of the alpha-parameter model and the rook model for matchings. Adv. Appl. Math. 84, 8–33 (2017)

    Google Scholar 

  21. A.-J. Yee, Combinatorial proofs of identities in basic hypergeometric series. Eur. J. Comb. 29, 1365–1375 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Zeilberger, A \(q\)-Foata proof of the \(q\)-Saalschütz identity. Euro. J. Comb. 8, 461–463 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Schlosser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schlosser, M.J., Yoo, M. (2017). Basic Hypergeometric Summations from Rook Theory. In: Andrews, G., Garvan, F. (eds) Analytic Number Theory, Modular Forms and q-Hypergeometric Series. ALLADI60 2016. Springer Proceedings in Mathematics & Statistics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-319-68376-8_37

Download citation

Publish with us

Policies and ethics