Skip to main content

Littlewood Polynomials

  • Conference paper
  • First Online:
Analytic Number Theory, Modular Forms and q-Hypergeometric Series (ALLADI60 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 221))

Included in the following conference series:

Abstract

We consider exponential polynomials with restricted coefficients, for example by requiring that they all have absolute value 1, or the even more restricted class considered by Littlewood, namely those whose coefficients are all \(\pm 1\). This paper expands on material presented in the Erdős Colloquium delivered on March 18, 2016, as part of the 2016 Gainesville International Number Theory Conference.

This paper is dedicated to Krishnaswami Alladi on the occasion of his 60th birthday

Research supported in part by NSF grant DMS-063529.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.-P. Allouche, J. Shallit, Automatic Sequences. Theory, Applications, Generalizations (Cambridge University Press, Cambridge, 2003), xvi+571 pp

    Google Scholar 

  2. R.H. Barker, Group synchronizing of binary digital systems, in Communication Theory (Butterworths Science Publications, London, 1953), pp. 273–287

    Google Scholar 

  3. J. Beck, Flat polynomials on the unit circle–note on a problem of Littlewood. Bull. Lond. Math. Soc. 23, 269–277 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Bernstein, Sur la convergence absolue des séries trigonométriques. Commun. Soc. Math. Kharkov 2(14), 139–144 (1914)

    Google Scholar 

  5. E. Bombieri, J. Bourgain, On Kahane’s ultraflat polynomials. J. Eur. Math. Soc. 11, 627–703 (2009)

    MathSciNet  MATH  Google Scholar 

  6. P. Borwein, M. Mossinghoff, Wieferich pairs and Barker sequences. II. LMS J. Comput. Math. 17, 24–32 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Brillhart, On the Rudin–Shapiro polynomials. Duke Math. J. 40, 335–353 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Brillhart, L. Carlitz, Note on the Shapiro polynomials. Proc. Am. Math. Soc. 25, 114–119 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Brillhart, P. Erdős, P. Morton, On sums of Rudin–Shapiro coefficients. II. Pac. J. Math. 107, 39–69 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Brillhart, J.S. Lomont, P. Morton, Cyclotomic properties of the Rudin–Shapiro polynomials. J. Rein. Angew. Math. 288, 37–65 (1976)

    MathSciNet  MATH  Google Scholar 

  11. J. Brillhart, P. Morton, Über Summen von Rudin–Shapiroschen Koeffizienten. Ill. J. Math. 22, 126–148 (1978)

    MATH  Google Scholar 

  12. J. Brillhart, P. Morton, A case study in mathematical research: the Golay–Rudin–Shapiro sequence. Am. Math. Mon. 103, 854–869 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. J.S. Byrnes, D.J. Newman, The \(L^4\) norm of a polynomial with coefficients \(\pm 1\). Am. Math. Mon. 97, 42–45 (1990)

    Google Scholar 

  14. C. Doche, L. Habsieger, Moments of the Rudin–Shapiro polynomials. J. Fourier Anal. Appl. 10, 497–505 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. B. Ekhad, D. Zeilberger, Integrals involving Rudin–Shapiro polynomials and a sketch of a proof of Saffari’s conjecture, preprint, 12 pp (2016)

    Google Scholar 

  16. P. Erdős, Some unsolved problems. Mich. Math. J. 4, 291–300 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.J.E. Golay, Multislit spectrometry. J. Opt. Soc. Am. 39, 437–444 (1949)

    Article  Google Scholar 

  18. M.J.E. Golay, Static multislit spectrometry and its application to the panoramic display of infraread spectra. J. Opt. Soc. Am. 41, 468–472 (1951)

    Article  Google Scholar 

  19. M.J.E. Golay, A class of finite binary sequences with alternate autocorrelation values equal to zero. IEEE Trans. Inf. Theory IT-18, 449–450 (1972)

    Google Scholar 

  20. M.J.E. Golay, Sieves for low autocorrelation binary sequences. IEEE Trans. Inf. Theory IT-23, 43–51 (1977)

    Google Scholar 

  21. M.J.E. Golay, The merit factor of long low autocorrelation binary sequences. IEEE Trans. Inf. Theory IT-28(3), 543–549 (1982)

    Google Scholar 

  22. M.J.E. Golay, The merit factor of Legendre sequences. IEEE Trans. Inf. Theory 29, 934–935 (1983)

    Article  MATH  Google Scholar 

  23. G.H. Hardy, J.E. Littlewood, Some problems of Diophantine approximation: a remarkable trigonometric series. Proc. Natl. Acad. Sci. 2, 583–586 (1916)

    Article  Google Scholar 

  24. T. Høholdt, H.E. Jensen, Determination of the merit factor of Legendre sequences. IEEE Trans. Inf. Theory 34, 161–164 (1988)

    Article  MATH  Google Scholar 

  25. J. Jedwab, D.J. Katz, K.-U. Schmidt, Littlewood polynomials with small \(L^4\) norm. Adv. Math. 241, 127–136 (2013)

    Google Scholar 

  26. J.-P. Kahane, Sur les polynômes à coefficients unimodulaires. Bull. Lond. Math. Soc. 12, 321–342 (1980)

    Article  MATH  Google Scholar 

  27. J.-P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris (1994), 192 pp; Revised Edition, 1994, 243 pp

    Google Scholar 

  28. J.E. Littlewood, On the mean values of certain trigonometrical polynomials. J. Lond. Math. Soc. 36, 307–334 (1961)

    Article  MATH  Google Scholar 

  29. J.E. Littlewood, On the mean values of certain trigonometrical polynomials II. Ill. J. Math. 6, 1–39 (1962)

    MATH  Google Scholar 

  30. J.E. Littlewood, On polynomials \(\sum ^n\pm z^m\), \(\sum ^n e^{\alpha _mi}z^m\), \(z=e^{\theta i}\). J. Lond. Math. Soc. 41, 367–376 (1966)

    Google Scholar 

  31. J.E. Littlewood, Some Problems in Real and Complex Analysis (Health, Lexington, 1968)

    MATH  Google Scholar 

  32. C. Mauduit, J. Rivat, Prime numbers along Rudin–Shapiro sequences. J. Eur. Math. Soc. 17, 2595–2642 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Mendès France, G. Tenenbaum, Dimension des courbes planes, papiers plies, et suites de Rudin–Shapiro. Bull. Soc. Math. Fr. 109, 207–215 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. H.L. Montgomery, An exponential polynomial formed with the Legendre symbol. Acta Arith. 37, 375–380 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. H.L. Montgomery, Early Fourier Analysis. Pure and Applied Undergraduate Texts (American Mathematical Society, Providence, 2015), x+390 pp

    Google Scholar 

  36. K. Nishioka, A new approach in Mahler’s method. J. Rein. Angew. Math. 407, 202–219 (1990)

    MathSciNet  MATH  Google Scholar 

  37. K. Nishioka, Mahler Functions and Transcendence. LNM (Springer, Berlin, 1996), viii+185 pp

    Google Scholar 

  38. A.M. Odlyzko, Search for ultraflat polynomials with plus and minus one coefficients, in Connections in Discrete Mathematics: A Celebration of the Work of Ron Graham, ed. by S. Butler, J. Cooper, G. Hurlbert (Cambridge University Press, Cambridge, 2016), 14 pp to appear

    Google Scholar 

  39. M. Riesz, Eine trigonometrische Interpolations-formel und einige Ungleichung für Polynome. Jahresbericht des Deutschen Mathematiker-Vereinigung 23, 354–368 (1914)

    MATH  Google Scholar 

  40. B. Rodgers, On the distribution of Rudin–Shapiro polynomials, arXiv: 1606.01637 [Math.CA], 12 pp, (2016)

  41. W. Rudin, Some theorems on Fourier coefficients. Proc. Am. Math. Soc. 10, 855–859 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Saffari, Une fonction extrémale liée à la suite de Rudin-Shapiro. C. R. Acad. Sci. Paris Sér. I Math 303, 97–100 (1986)

    MathSciNet  MATH  Google Scholar 

  43. H.S. Shapiro, Extremal problems for polynomials. M.S. thesis, MIT, 1951

    Google Scholar 

  44. R. Turyn, J. Storer, On binary sequences. Proc. Am. Math. Soc. 12, 394–399 (1961)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is also indebted to the referee for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh L. Montgomery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montgomery, H.L. (2017). Littlewood Polynomials. In: Andrews, G., Garvan, F. (eds) Analytic Number Theory, Modular Forms and q-Hypergeometric Series. ALLADI60 2016. Springer Proceedings in Mathematics & Statistics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-319-68376-8_30

Download citation

Publish with us

Policies and ethics