Advertisement

Visual Tracking and Servoing System for Experiment of Optogenetic Control of Brain Activity

  • Qinghai LiaoEmail author
  • Ming Liu
  • Wenchong Zhang
  • Peng Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10528)

Abstract

To study the wireless optogenetic control of neural activity using fully implantable devices, we designed experiments that we make laser emit 980-nm light on the experiment mice brain where the upconversion nanoparticles which works as transducer to convert near-infrared energy to visible lights is implanted, observe the mice activity and record its trajectories. Hence, we propose and implement a automatic visual tracking and servoing system to aid and speed up the experiment. Usually, people drives PTZ for active surveillance tracking which aims to keep the object in the middle of the field of view. In this work, we utilize a PTZ to cast laser beam on the target object as the actuator (PTZ) and the sensor (camera) decoupled that they can be arbitrarily installed. And we also present the automatic parameters calibration method and mathematical modeling for this system to keep high accuracy.

Keywords

Visual tracking Servoing Calibration 

References

  1. 1.
    Bradski, G.: OpenCV. Dr. Dobb’s Journal of Software Tools (2000)Google Scholar
  2. 2.
    Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A System for Video Surveillance and Monitoring, vol. 823 (2000). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=868676
  3. 3.
    Cucchiara, R., Prati, A., Vezzani, R.: Advanced video surveillance with pan tilt zoom cameras. In: In: Proceedings of the 6th IEEE International Workshop on Visual Surveillance, pp. 334–352 (2006). https://pdfs.semanticscholar.org/dfdb/9850aed7071c39e15090f7ad4649c60091e2.pdf
  4. 4.
    Ferryman, J., Maybank, S., Worrall, A.: Visual surveillance for moving vehicles. In: Proceedings of 1998 IEEE Workshop on Visual Surveillance, pp. 73–80, January 1998Google Scholar
  5. 5.
    Gianni, M., Papadakis, P., Pirri, F., Liu, M., Pomerleau, F., Colas, F., Zimmermann, K., Svoboda, T., Petricek, T., Kruijff, G.J.M., et al.: A unified framework for planning and execution-monitoring of mobile robots. Autom. Action Plan. Auton. Mob. Robots 11, 09 (2011)Google Scholar
  6. 6.
    Guha, P., Palai, D., Goswami, D., Mukerjee, A.: DynaTracker: target tracking in active video surveillance systems. In: ICAR 2005 Proceedings of the 12th International Conference on Advanced Robotics 2005, pp. 621–627 (2005). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1507473
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)Google Scholar
  8. 8.
    Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998). doi: 10.1023/A:1008078328650 CrossRefGoogle Scholar
  9. 9.
    Jain, A., Kopell, D., Kakligian, K., Wang, Y.F.: Using stationary-dynamic camera assemblies for wide-area video surveillance and selective attention. In: Proceedings of the IEEE Computer Society Conference on Computer Vision Pattern Recognition, vol. 1, 537–544 (2006)Google Scholar
  10. 10.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)CrossRefGoogle Scholar
  11. 11.
    Lalonde, M., Foucher, S., Gagnon, L., Pronovost, E., Derenne, M., Janelle, A., West, S.S.: A system to automatically track humans and vehicles with a PTZ camera. In: Proceedings of SPIE, vol. 6575 (2007). http://www.crim.ca/perso/langis.gagnon/articles/6575-1_final.pdf
  12. 12.
    Liao, Q., Zhang, W., Shi, P., Liu, M.: A flexible object tracking system for planary motion. In: IEEE International Conference on Real-Time Computing and Robotics (RCAR), pp. 362–367. IEEE (2016)Google Scholar
  13. 13.
    Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002). doi: 10.1007/3-540-47969-4_44 CrossRefGoogle Scholar
  14. 14.
    Smeulders, A.W., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)CrossRefGoogle Scholar
  15. 15.
    Sun, Y., Liu, M., Meng, M.Q.H.: WiFi signal strength-based robot indoor localization. In: 2014 IEEE International Conference on Information and Automation (ICIA), pp. 250–256, July 2014Google Scholar
  16. 16.
    Tan, M., Wang, L., Tardioli, D., Liu, M.: A resource allocation strategy in a robotic ad-hoc network. In: 2014 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 122–127, May 2014Google Scholar
  17. 17.
    Wang, L., Liu, M., Meng, M.Q.H.: Towards cloud robotic system: a case study of online co-localization for fair resource competence. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2132–2137, December 2012Google Scholar
  18. 18.
    Wang, L., Liu, M., Meng, M.Q.H.: Real-time multisensor data retrieval for cloud robotic systems. IEEE Trans. Autom. Sci. Eng. 12(2), 507–518 (2015)CrossRefGoogle Scholar
  19. 19.
    Wang, L., Liu, M., Meng, M.Q.H., Siegwart, R.: Towards real-time multi-sensor information retrieval in cloud robotic system. In: 2012 IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 21–26, September 2012Google Scholar
  20. 20.
    Yang, C.S.: PTZ camera based position tracking in IP-surveillance system. In: 2008 3rd International Conference on Sensing Technology, pp. 142–146 (2008). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4757089
  21. 21.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38(4), 13 (2006)CrossRefGoogle Scholar
  22. 22.
    Zhao, Y., Shi, H., Chen, X., Li, X., Wang, C.: An overview of object detection and tracking. In: 2015 IEEE International Conference on Information and Automation, pp. 280–286, August 2015Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Qinghai Liao
    • 1
    Email author
  • Ming Liu
    • 1
  • Wenchong Zhang
    • 2
  • Peng Shi
    • 2
  1. 1.Hong Kong University of Science and TechnologyHong KongChina
  2. 2.Department of Mechanical and Biomedical EngineeringCity University of Hong KongHong KongChina

Personalised recommendations