Abstract
Constrained by on-board resource, most of the low-cost robots could not autonomously navigate in unknown environments. In the latest years, cloud computing and storage has been developing rapidly, making it possible to offload parts of visual SLAM processing to a server. However, most of the cloud-based vSLAM frameworks are not suitable or fully tested for the applications of poor-equipped agents. In this paper, we describe an online localization service on a novel cloud-based framework, where the expensive map storage and global feature matching are provided as a service to agents. It enables a scenario that only sensor data collection is executed on agents, while the cloud aids the agents to localize and navigate. At the end, we evaluate the localization service quantitatively and qualitatively. The results indicate that the proposed cloud framework can fit the requirement of real-time applications.
Keywords
- Cloud robotics
- Mobile robot
- Visual SLAM
This work was sponsored by the Research Grant Council of Hong Kong SAR Government, China, under project Nos. 16212815, 21202816 and National Natural Science Foundation of China Nos. 6140021318 and 61640305; Shenzhen Science, Technology and Innovation Comission (SZSTI) JCYJ20160428154842603 and JCYJ20160401100022706; partially supported by the HKUST Project IGN16EG12. All rewarded to Prof. Ming Liu.
This is a preview of subscription content, access via your institution.
Buying options









Notes
- 1.
OpenResty: a registered trademark owned by OpenResty Inc. https://openresty.org.
- 2.
OrangePi Plus2: http://www.orangepi.org/orangepiplus2.
- 3.
JSON: a lightweight data-interchange that is easy for humans to read and write. http://www.json.org.
- 4.
RapidJSON: a fast JSON parser/generator for C++. http://rapidjson.org.
References
Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. (2017)
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). doi:10.1007/978-3-319-10605-2_54
Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. arXiv preprint arXiv:1610.06475 (2016)
Gálvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Rob. 28(5), 1188–1197 (2012)
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.D., Leonard, J.J.: Simultaneous localization and mapping: present, future, and the robust-perception age. arXiv preprint arXiv:1606.05830 (2016)
Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)
Liu, M., Qiu, K., Che, F., Li, S., Hussain, B., Wu, L., Yue, C.P.: Towards indoor localization using visible light communication for consumer electronic devices. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 143–148. IEEE (2014)
Zhang, F., Qiu, K., Liu, M.: Asynchronous blind signal decomposition using tiny-length code for visible light communication-based indoor localization, pp. 2800–2805 (2015)
Qiu, K., Zhang, F., Liu, M.: Visible light communication-based indoor localization using gaussian process, pp. 3125–3130 (2015)
Qiu, K., Zhang, F., Liu, M.: Let the light guide us: VLC-based localization. IEEE Robot. Autom. Mag. 23(4), 174–183 (2016)
Vadeny, D., Chen, M., Huang, E., Elgala, H.: VSLAM and VLC based localization
Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I., Tardós, J.: A comparison of loop closing techniques in monocular SLAM. Robot. Auton. Syst. 57(12), 1188–1197 (2009)
Cummins, M., Newman, P.: FAB-MAP: probabilistic localization and mapping in the space of appearance. Int. J. Robot. Res. 27(6), 647–665 (2008)
Mur-Artal, R., Tardós, J.D.: Fast relocalisation and loop closing in keyframe-based SLAM. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 846–853. IEEE (2014)
Liu, M., Siegwart, R.: Topological mapping and scene recognition with lightweight color descriptors for an omnidirectional camera. IEEE Trans. Rob. 30(2), 310–324 (2014)
Whelan, T., Kaess, M., Leonard, J.J., McDonald, J.: Deformation-based loop closure for large scale dense RGB-D SLAM. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 548–555. IEEE (2013)
Glover, A.J., Maddern, W.P., Milford, M.J., Wyeth, G.F.: FAB-MAP + RATSLAM: appearance-based SLAM for multiple times of day. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3507–3512. IEEE (2010)
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Kobe, vol. 3, p. 5 (2009)
Arumugam, R., Enti, V.R., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, F.F., Senthil Kumar, A., Meng, K.D., Kit, G.W.: DAvinCi: a cloud computing framework for service robots. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3084–3089. IEEE (2010)
Markus, W., Michael, B., Javier, C., d’Andrea, R., Elfring, J., Galvez-Lopez, D., Häussermann, K., Janssen, R., Montiel, J.M.M., Perzylo, A., et al.: RoboEarth. IEEE Robot. Autom. Mag. 18(2), 69–82 (2011)
Hunziker, D., Gajamohan, M., Waibel, M., D’Andrea, R.: Rapyuta: the RoboEarth cloud engine. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 438–444. IEEE (2013)
Mohanarajah, G., Usenko, V., Singh, M., D’Andrea, R., Waibel, M.: Cloud-based collaborative 3D mapping in real-time with low-cost robots. IEEE Trans. Autom. Sci. Eng. 12(2), 423–431 (2015)
Riazuelo, L., Civera, J., Montiel, J.M.M.: C2TAM: a first approach to a cloud framework for cooperative tracking and mapping
Labbe, M., Michaud, F.: Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Trans. Robot. 29(3), 734–745 (2013)
Wang, L., Liu, M., Meng, M.Q.H.: A hierarchical auction-based mechanism for real-time resource allocation in cloud robotic systems. IEEE Trans. Syst. Man Cybern. 1–12 (2016)
Lubbers, P., Albers, B., Smith, R., Salim, F.: Pro HTML5 Programming: Powerful APIs for Richer Internet Application Development. Apress, Berkely (2010)
Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M.W., Siegwart, R.: The EUROC micro aerial vehicle datasets. Int. J. Robot. Res. 35(10), 1157–1163 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Jiao, J., Yun, P., Liu, M. (2017). A Cloud-Based Visual SLAM Framework for Low-Cost Agents. In: Liu, M., Chen, H., Vincze, M. (eds) Computer Vision Systems. ICVS 2017. Lecture Notes in Computer Science(), vol 10528. Springer, Cham. https://doi.org/10.1007/978-3-319-68345-4_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-68345-4_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68344-7
Online ISBN: 978-3-319-68345-4
eBook Packages: Computer ScienceComputer Science (R0)