Robot’s Workspace Enhancement with Dynamic Human Presence for Socially-Aware Navigation

  • Ioannis Kostavelis
  • Andreas Kargakos
  • Dimitrios Giakoumis
  • Dimitrios Tzovaras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10528)

Abstract

The incorporation of service robots in human populated environments gives rise to the adaptation of cruise strategies that allow robots to move in a natural, secure and ordinary manner among their cohabitants. Therefore, robots should firstly apprehend their space similarly with the people and, secondly, should adopt human motion anticipation strategies in their planning mechanism. The paper at hand introduces a closed-loop human oriented robot navigation strategy, where on-board a moving robot, multimodal human detection and tracking methods are deployed to predict human motion intention in the shared workspace. The human occupied space is probabilistically constrained following the proxemics theory. The impact of human presence in the commonly shared space is imprinted to the robot’s navigation behaviour after undergoing a social filtering step based on the inferred walking pattern. The proposed method has been integrated with a robotic platform and extensively evaluated in terms of socially acceptable behaviour in real-life experiments exhibiting increased navigation capacity in human populated environments.

Keywords

Robot navigation Leg and human skeleton tracker Social costmap Human motion intension prediction Robot path planning 

Notes

Acknowledgments

This work has been supported by the EU Horizon 2020 funded project namely: “Robotic Assistant for MCI Patients at home (RAMCIP)” under the grant agreement with no: 643433.

References

  1. 1.
    Buttimer, A., Seamon, D.: The Human Experience of Space and Place. Routledge, Abingdon (2015)Google Scholar
  2. 2.
    Charalampous, K., Kostavelis, I., Gasteratos, A.: Robot navigation in large-scale social maps: an action recognition approach. Expert Syst. Appl. 66, 261–273 (2016)CrossRefGoogle Scholar
  3. 3.
    Flaherty, G.: Dementia and Wandering Behavior: Concern for the Lost Elder. Springer Publishing Company, Heidelberg (2006)Google Scholar
  4. 4.
    Fulgenzi, C., Tay, C., Spalanzani, A., Laugier, C.: Probabilistic navigation in dynamic environment using rapidly-exploring random trees and Gaussian processes. In: IROS, pp. 1056–1062. IEEE (2008)Google Scholar
  5. 5.
    Hall, E.T.: The Hidden Dimension, vol. 1990. Anchor Books, New York (1969)Google Scholar
  6. 6.
    Kim, B., Pineau, J.: Socially adaptive path planning in human environments using inverse reinforcement learning. Int. J. Soc. Robot. 8(1), 51–66 (2016)CrossRefGoogle Scholar
  7. 7.
    Kirby, R., Simmons, R., Forlizzi, J.: Companion: a constraint-optimizing method for person-acceptable navigation. In: RO-MAN 2009, pp. 607–612. IEEE (2009)Google Scholar
  8. 8.
    Large, F., Vasquez, D., Fraichard, T., Laugier, C.: Avoiding cars and pedestrians using velocity obstacles and motion prediction. In: Intelligent Vehicles Symposium, pp. 375–379. IEEE (2004)Google Scholar
  9. 9.
    Leigh, A., Pineau, J.: Laser-based person tracking for clinical locomotion analysis. In: IROS-Rehabilitation and Assistive Robotics (2014)Google Scholar
  10. 10.
    Luber, M., Spinello, L., Silva, J., Arras, K.O.: Socially-aware robot navigation: a learning approach. In: IROS, pp. 902–907. IEEE (2012)Google Scholar
  11. 11.
    Mac, T.T., Copot, C., Tran, D.T., De Keyser, R.: Heuristic approaches in robot path planning: a survey. RAS 86, 13–28 (2016)Google Scholar
  12. 12.
    Papadakis, P., Spalanzani, A., Laugier, C.: Social mapping of human-populated environments by implicit function learning. In: IROS, pp. 1701–1706. IEEE (2013)Google Scholar
  13. 13.
    Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile robot motion planner. IEEE TRO 23(5), 874–883 (2007)Google Scholar
  14. 14.
    Svenstrup, M., Bak, T., Andersen, H.J.: Trajectory planning for robots in dynamic human environments. In: IROS, pp. 4293–4298. IEEE (2010)Google Scholar
  15. 15.
    Talebpour, Z., Navarro, I., Martinoli, A.: On-board human-aware navigation for indoor resource-constrained robots: a case-study with the ranger. In: Symposium System Integration, pp. 63–68. IEEE (2015)Google Scholar
  16. 16.
    Trautman, P., Ma, J., Murray, R.M., Krause, A.: Robot navigation in dense human crowds: statistical models and experimental studies of human-robot cooperation. IJRR 34(3), 335–356 (2015)Google Scholar
  17. 17.
    Unhelkar, V.V., Pérez-D’Arpino, C., Stirling, L., Shah, J.A.: Human-robot co-navigation using anticipatory indicators of human walking motion. In: ICRA, pp. 6183–6190. IEEE (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ioannis Kostavelis
    • 1
  • Andreas Kargakos
    • 1
  • Dimitrios Giakoumis
    • 1
  • Dimitrios Tzovaras
    • 1
  1. 1.Centre for Research & Technology Hellas, Information Technologies InstituteThermi-ThessalonikiGreece

Personalised recommendations